linux及安全第二周总结——20135227黄晓妍

实验部分:

首先运行结果截图

 

代码分析:

Mypcb.h

/*

 *  linux/mykernel/mypcb.h

 *

 *  Kernel internal PCB types

 *

 *  Copyright (C) 2013  Mengning

 *

 */

 

#define MAX_TASK_NUM        4

#define KERNEL_STACK_SIZE   1024*8

 

/* CPU-specific state of this task */

struct Thread {

    unsigned long           ip;

    unsigned long           sp;

};

 

typedef struct PCB{

    int pid;//进程的id用pid表示

    volatile long state;  /* -1 unrunnable, 0 runnable, >0 stopped */ //进程状态,-1等待,0运行,>0停止

    char stack[KERNEL_STACK_SIZE];//堆栈

    /* CPU-specific state of this task */

    struct Thread thread;

    unsigned long  task_entry;//入口

    struct PCB *next;//进程用链表的形式链接

}tPCB;

 

void my_schedule(void);

mymian.c

/*

 *  linux/mykernel/mymain.c

 *

 *  Kernel internal my_start_kernel

 *

 *  Copyright (C) 2013  Mengning

 *

 */

#include <linux/types.h>

#include <linux/string.h>

#include <linux/ctype.h>

#include <linux/tty.h>

#include <linux/vmalloc.h>

 

 

#include "mypcb.h"

 

tPCB task[MAX_TASK_NUM];

tPCB * my_current_task = NULL;//当前task指针

volatile int my_need_sched = 0;//是否需要调度的标识

 

void my_process(void);

 

 

void __init my_start_kernel(void)

{

    int pid = 0;

    int i;

    /* Initialize process 0*/

    task[pid].pid = pid;//初始化0号进程

    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped *///状态是运行

    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;//入口是myprocess

    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];//堆栈栈顶

    task[pid].next = &task[pid];//刚启动时只有它自己,所以next也指向它自己

    /*fork more process *///创建更多进程

    for(i=1;i<MAX_TASK_NUM;i++)

    {

        memcpy(&task[i],&task[0],sizeof(tPCB));//把0号进程的状态复制给下一个进程

        task[i].pid = i;//初始化刚创建的进程

        task[i].state = -1;

        task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];//新进程的堆栈

        task[i].next = task[i-1].next;//指向下一个进程

        task[i-1].next = &task[i];//新进程放在链表的尾部

    }

    /* start process 0 by task[0] *///开始执行0号进程

    pid = 0;

    my_current_task = &task[pid];

         asm volatile(//此处为嵌入式汇编代码

             "movl %1,%%esp\n\t"    /* set task[pid].thread.sp to esp *///将thread.sp复制给esp

             "pushl %1\n\t"                /* push ebp *///当前栈是空的,esp=ebp,所以压栈sep就是压栈ebp

             "pushl %0\n\t"                /* push task[pid].thread.ip *///将ip压栈

             "ret\n\t"                      /* pop task[pid].thread.ip to eip *///将ip弹栈,即myprocess的头部,也就是0号进程正式开始启动

             "popl %%ebp\n\t"//弹栈

             :

             : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)        /* input c or d mean %ecx/%edx*///c是%0,即为ip;d是%1,即为sp.

         );

}   //内核初始化完成,0号进程开始执行

void my_process(void)

{

    int i = 0;

    while(1)

    {

        i++;

        if(i%10000000 == 0)

        {

            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);

            if(my_need_sched == 1)                              //1为需要调度

            {

                my_need_sched = 0;

                     my_schedule();

                 }

                 printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);

        }    

    }

}

 

Myinterrupt

/*

 *  linux/mykernel/myinterrupt.c

 *

 *  Kernel internal my_timer_handler

 *

 *  Copyright (C) 2013  Mengning

 *

 */  

#include <linux/types.h>

#include <linux/string.h>

#include <linux/ctype.h>

#include <linux/tty.h>

#include <linux/vmalloc.h>

 

#include "mypcb.h"

 

extern tPCB task[MAX_TASK_NUM];

extern tPCB * my_current_task;

extern volatile int my_need_sched;

volatile int time_count = 0;

 

/*

 * Called by timer interrupt.

 * it runs in the name of current running process,

 * so it use kernel stack of current running process

 */

void my_timer_handler(void)//时间片切换

{

#if 1

    if(time_count%1000 == 0 && my_need_sched != 1)

    {

        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");

        my_need_sched = 1;//调度

    }

    time_count ++ ; 

#endif

    return; 

}

 

void my_schedule(void)//

{

    tPCB * next;//下一个进程模块

    tPCB * prev;//正在执行的进程模块

 

    if(my_current_task == NULL

        || my_current_task->next == NULL)

    {

             return;

    }

    printk(KERN_NOTICE ">>>my_schedule<<<\n");

    /* schedule */

    next = my_current_task->next;

    prev = my_current_task;

    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped *///切换进程

    {

             /* switch to next process */

             asm volatile(   

                 "pushl %%ebp\n\t"             /* save ebp */

                 "movl %%esp,%0\n\t"    /* save esp *///存到内存的prev->thread.sp

                 "movl %2,%%esp\n\t"     /* restore  esp *///存到内存的next->thread.sp

                 "movl $1f,%1\n\t"       /* save eip */        //标号1: 的位置放在内存的prev->thread.ip

                 "pushl %3\n\t"  //存到内存的next->thread.ip

                 "ret\n\t"                      /* restore  eip */

                 "1:\t"                  /* next process start here */

                 "popl %%ebp\n\t"

                 : "=m" (prev->thread.sp),"=m" (prev->thread.ip)

                 : "m" (next->thread.sp),"m" (next->thread.ip)

             );

             my_current_task = next;

             printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);          

    }

    Else//切换到新进程

    {

        next->state = 0;

        my_current_task = next;

        printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);

             /* switch to new process */

             asm volatile(   

                 "pushl %%ebp\n\t"             /* save ebp */

                 "movl %%esp,%0\n\t"    /* save esp */

                 "movl %2,%%esp\n\t"     /* restore  esp */

                 "movl %2,%%ebp\n\t"     /* restore  ebp */

                 "movl $1f,%1\n\t"       /* save eip */       

                 "pushl %3\n\t"

                 "ret\n\t"                      /* restore  eip */

                 : "=m" (prev->thread.sp),"=m" (prev->thread.ip)

                 : "m" (next->thread.sp),"m" (next->thread.ip)

             );         

    }  

    return;    

}

总结部分:

本周要点:

  1. 计算机的三大法宝:存储程序计算机;函数调用堆栈;中断机制
  2. 堆栈

最原始的计算机是没有堆栈的概念的,出现高级语言以后才有了堆栈。堆栈是记录路径和参数的空间。

函数调用框架

传递参数(只适用于32位的x86)

保存返回地址

提供局部变量空间

  3.堆栈寄存器

esp,堆栈栈顶指针,stack pointer

eip,  堆栈基址指针,base pointer

  4.堆栈操作

push,压栈减4字节

pop,弹栈加4字节

  5.其他寄存器

eip,不管是顺序执行,还是跳转,分支,都总是指向下一条应该执行的语句。

call,将当前eip的值压栈,并将eip的值改为函数入口的下一条指令的地址值。

ret,将eip的值弹栈放入eip中。

  6.建立函数堆栈框架

push %ebp

movl %esp,%ebp

   拆除函数堆栈框架

                   movl %ebp.%esp

                   pop %ebp

  7.重点理解myinterruput.c里进程切换的代码。(切换进程指的是下一个切换上执行的进程)

  分成两种情况,第一种是切换到的进程是执行过的进程,第二种是切换到的进程是新进程。首先第一种,先将当前进程的ebp压栈,然后将当前进程的栈顶指针esp保存到链表结构当前进程prev->thread.sp中,再将链表中切换的进程的next->thread.sp 复制给栈顶指针esp.将链表中当前进程prev->thread.ip存入函数的入口的值,再将切换进程的next->thread.ip压栈。然后第二种,先建好链表,再执行上述过程。

posted @ 2016-03-05 18:00  20135227黄晓妍  阅读(289)  评论(0编辑  收藏  举报