python并行

concurrent:built-in module,效率不错  

def calculate(arg, num_process=8):
    if type(arg) is list or isinstance(arg, types.GeneratorType):
        # Approach 1: Use Python ProcessPoolExecutor
        with concurrent.futures.ProcessPoolExecutor(num_process) as executor:
            result_list = list(executor.map(calculate_single_scenario, arg))
        return result_list
    else:
        return calculate_single_scenario(arg)

scoop: map, reduce, 调用多台机器

joblib:并行,且cache以前算过的。

import joblib
from joblib import Parallel, delayed
from joblib import Memory
def calculate_with_cache(arg, num_process=8):
    func_cached = memory.cache(calculate_single_scenario)
if type(arg) is list or isinstance(arg, types.GeneratorType): return Parallel(n_jobs=num_process)(delayed(func_cached)(arg_single) for arg_single in arg) else: return func_cached(arg)

 

posted @ 2019-01-24 14:32  andy_0212  阅读(223)  评论(0编辑  收藏  举报