kafka 版本:1.1.1
一个分区对应一个文件夹,数据以 segment 文件存储,segment 默认 1G。
分区文件夹:
segment 文件:
segment 的命名规则是怎样的?
kafka roll segment 的逻辑:kafka.log.Log#roll
/** * Roll the log over to a new active segment starting with the current logEndOffset. * This will trim the index to the exact size of the number of entries it currently contains. * * @return The newly rolled segment */ def roll(expectedNextOffset: Option[Long] = None): LogSegment = { maybeHandleIOException(s"Error while rolling log segment for $topicPartition in dir ${dir.getParent}") { val start = time.hiResClockMs() lock synchronized { checkIfMemoryMappedBufferClosed() val newOffset = math.max(expectedNextOffset.getOrElse(0L), logEndOffset) // 00000000000030898257.log 文件 val logFile = Log.logFile(dir, newOffset) if (segments.containsKey(newOffset)) { // segment with the same base offset already exists and loaded if (activeSegment.baseOffset == newOffset && activeSegment.size == 0) { // We have seen this happen (see KAFKA-6388) after shouldRoll() returns true for an // active segment of size zero because of one of the indexes is "full" (due to _maxEntries == 0). warn(s"Trying to roll a new log segment with start offset $newOffset " + s"=max(provided offset = $expectedNextOffset, LEO = $logEndOffset) while it already " + s"exists and is active with size 0. Size of time index: ${activeSegment.timeIndex.entries}," + s" size of offset index: ${activeSegment.offsetIndex.entries}.") deleteSegment(activeSegment) } else { throw new KafkaException(s"Trying to roll a new log segment for topic partition $topicPartition with start offset $newOffset" + s" =max(provided offset = $expectedNextOffset, LEO = $logEndOffset) while it already exists. Existing " + s"segment is ${segments.get(newOffset)}.") } } else if (!segments.isEmpty && newOffset < activeSegment.baseOffset) { throw new KafkaException( s"Trying to roll a new log segment for topic partition $topicPartition with " + s"start offset $newOffset =max(provided offset = $expectedNextOffset, LEO = $logEndOffset) lower than start offset of the active segment $activeSegment") } else { val offsetIdxFile = offsetIndexFile(dir, newOffset) val timeIdxFile = timeIndexFile(dir, newOffset) val txnIdxFile = transactionIndexFile(dir, newOffset) for (file <- List(logFile, offsetIdxFile, timeIdxFile, txnIdxFile) if file.exists) { warn(s"Newly rolled segment file ${file.getAbsolutePath} already exists; deleting it first") Files.delete(file.toPath) } Option(segments.lastEntry).foreach(_.getValue.onBecomeInactiveSegment()) } // take a snapshot of the producer state to facilitate recovery. It is useful to have the snapshot // offset align with the new segment offset since this ensures we can recover the segment by beginning // with the corresponding snapshot file and scanning the segment data. Because the segment base offset // may actually be ahead of the current producer state end offset (which corresponds to the log end offset), // we manually override the state offset here prior to taking the snapshot. producerStateManager.updateMapEndOffset(newOffset) producerStateManager.takeSnapshot() val segment = LogSegment.open(dir, baseOffset = newOffset, config, time = time, fileAlreadyExists = false, initFileSize = initFileSize, preallocate = config.preallocate) addSegment(segment) // We need to update the segment base offset and append position data of the metadata when log rolls. // The next offset should not change. updateLogEndOffset(nextOffsetMetadata.messageOffset) // schedule an asynchronous flush of the old segment scheduler.schedule("flush-log", () => flush(newOffset), delay = 0L) info(s"Rolled new log segment at offset $newOffset in ${time.hiResClockMs() - start} ms.") segment } } }
可以看到,segment 使用当前 logEndOffset 作为文件名。即 segment 文件用第一条消息的 offset 作文件名。
还有一个和 log 文件同名的 index 文件,index 文件内容是 offset/position,一个 entry 包含 2 个 int,一共 8 字节。
kafka.log.OffsetIndex#append
/** * Append an entry for the given offset/location pair to the index. This entry must have a larger offset than all subsequent entries. */ def append(offset: Long, position: Int) { inLock(lock) { require(!isFull, "Attempt to append to a full index (size = " + _entries + ").") if (_entries == 0 || offset > _lastOffset) { trace(s"Adding index entry $offset => $position to ${file.getAbsolutePath}") // 相对偏移量 mmap.putInt((offset - baseOffset).toInt) // 消息在 log 文件中的物理地址 mmap.putInt(position) _entries += 1 _lastOffset = offset require(_entries * entrySize == mmap.position(), entries + " entries but file position in index is " + mmap.position() + ".") } else { throw new InvalidOffsetException(s"Attempt to append an offset ($offset) to position $entries no larger than" + s" the last offset appended (${_lastOffset}) to ${file.getAbsolutePath}.") } } }
盗图一张:
http://rocketmq.cloud/zh-cn/docs/design-store.html
而 rocketMQ 的存储与 kafka 不同,分为 commitlog 和 consumequeue:
所有 topic 的消息存储在 commitlog 文件中,commitlog 默认按 1G 分段,文件名按物理偏移量命名。
而索引信息保存在 consumequeue/topic/queue 目录下,一个 entry 固定 20 字节,分别为 8 字节的 commitlog 物理偏移量、4 字节的消息长度、8 字节 tag hashcode。
从代码推出 commitLog 和 consumeQueue 的文件存储格式。
默认文件大小
// org.apache.rocketmq.store.config.MessageStoreConfig // CommitLog file size, default is 1G private int mapedFileSizeCommitLog = 1024 * 1024 * 1024; // ConsumeQueue file size, default is 30W, 大小有 6M private int mapedFileSizeConsumeQueue = 300000 * ConsumeQueue.CQ_STORE_UNIT_SIZE;
从这个方法可以清晰地看出 commitLog 的存储格式
// org.apache.rocketmq.store.CommitLog#calMsgLength private static int calMsgLength(int bodyLength, int topicLength, int propertiesLength) { final int msgLen = 4 //TOTALSIZE + 4 //MAGICCODE + 4 //BODYCRC + 4 //QUEUEID + 4 //FLAG + 8 //QUEUEOFFSET + 8 //PHYSICALOFFSET + 4 //SYSFLAG + 8 //BORNTIMESTAMP + 8 //BORNHOST + 8 //STORETIMESTAMP + 8 //STOREHOSTADDRESS + 4 //RECONSUMETIMES + 8 //Prepared Transaction Offset + 4 + (bodyLength > 0 ? bodyLength : 0) //BODY + 1 + topicLength //TOPIC + 2 + (propertiesLength > 0 ? propertiesLength : 0) //propertiesLength + 0; return msgLen; }
当使用分区 offset 拉取消息时,consumeQueue 类似于 index,一个 entry 20 字节,包括 commitLog offset,消息 size,tag 的 hashcode,对于延时消息,tag 字段存的是超时时间。
boolean result = this.putMessagePositionInfo(request.getCommitLogOffset(), request.getMsgSize(), tagsCode, request.getConsumeQueueOffset()); // org.apache.rocketmq.store.ConsumeQueue#putMessagePositionInfo private boolean putMessagePositionInfo(final long offset, final int size, final long tagsCode, final long cqOffset) { if (offset <= this.maxPhysicOffset) { return true; } this.byteBufferIndex.flip(); this.byteBufferIndex.limit(CQ_STORE_UNIT_SIZE); // 8 + 4 + 8 = 20 this.byteBufferIndex.putLong(offset); // commitLog 的物理位置 this.byteBufferIndex.putInt(size); // 消息大小 this.byteBufferIndex.putLong(tagsCode); // 8 字节 tag 哈希值 ... }
broker 为消息的 UNIQ_KEY 和 topic + "#" + key 建立索引,index 文件的结构本质上是一个 hashmap
// org.apache.rocketmq.store.index.IndexFile // 40 + 5000000*4 + 20000000*20 int fileTotalSize = IndexHeader.INDEX_HEADER_SIZE + (hashSlotNum * hashSlotSize) + (indexNum * indexSize); // 一个索引文件大概 420M, 写满了则创建新文件
索引文件就是一个 hashmap,根据 key 查询消息时,遍历所有的 indexFile
文件结构:
文件头
哈希槽
数据部分
// org.apache.rocketmq.store.index.IndexFile#putKey // 数据 entry 的大小为 20 字节:keyHash, phyOffset, timeDiff, slotValue this.mappedByteBuffer.putInt(absIndexPos, keyHash); this.mappedByteBuffer.putLong(absIndexPos + 4, phyOffset); this.mappedByteBuffer.putInt(absIndexPos + 4 + 8, (int) timeDiff); // 这里的 slotValue 是上一条索引的编号 this.mappedByteBuffer.putInt(absIndexPos + 4 + 8 + 4, slotValue); // 当前索引的编号写到哈希槽 this.mappedByteBuffer.putInt(absSlotPos, this.indexHeader.getIndexCount());
rocketMQ 写完 commitLog 后,写 consumeQueue 和 indexFile 是一个异步的过程,在
org.apache.rocketmq.store.DefaultMessageStore.ReputMessageService#doReput
中触发
// org.apache.rocketmq.store.DefaultMessageStore#DefaultMessageStore this.dispatcherList = new LinkedList<>(); this.dispatcherList.addLast(new CommitLogDispatcherBuildConsumeQueue()); this.dispatcherList.addLast(new CommitLogDispatcherBuildIndex());
// org.apache.rocketmq.store.DefaultMessageStore#doDispatch public void doDispatch(DispatchRequest req) { for (CommitLogDispatcher dispatcher : this.dispatcherList) { dispatcher.dispatch(req); } }