(作者:玛瑙河,转载请注明作者或出处,) 

以RBFNetwork为例,简要说明Jython + Weka 协同工作的方法。

1. install weka (into /opt/weka/ or elsewhere) & Jython

2. export CLASSPATH="$CLASSPATH:/opt/weka/weka.jar"

3. jython rbfnetwork.py traindata.arff testdata1.arff testdata2.arff ...

 

下面是rbfnetwork.py的代码

rbfnetwork.py
 1 #!/usr/bin/env jython
 2 import sys,os
 3 
 4 import java.io.FileReader as FileReader
 5 import java.lang.StringBuffer as StringBuffer
 6 import java.lang.Boolean as Boolean
 7 import java.io.ObjectOutputStream as ObjectOutputStream
 8 import java.io.ObjectInputStream as ObjectInputStream
 9 import java.io.FileOutputStream as FileOutputStream
10 import java.io.FileInputStream as FileInputStream
11 import weka.core.Instances as Instances
12 import weka.classifiers.functions.RBFNetwork as RBFNetwork
13 import weka.classifiers.Evaluation as Evaluation
14 import weka.core.Range as Range
15 import weka.core.Utils.splitOptions as splitOptions
16 import weka.classifiers.evaluation.output.prediction.PlainText as PlainText
17 
18 
19 # check commandline parameters
20 if ( (len(sys.argv) < 3)):
21     print "Usage: rbfnetwork.py <TRAIN-ARFF-file> <TEST-ARFF-file> ..."
22     sys.exit()
23 
24 # load data file
25 print >>sys.stdout,"Loading data..."
26 train_file = FileReader(sys.argv[1])
27 
28 train_data = Instances(train_file)
29 
30 # set the class Index - the index of the dependent variable
31 train_data.setClassIndex(train_data.numAttributes() - 1)
32 
33 model=sys.argv[1]+".model"
34 if os.path.exists(model):
35     #load existed model
36     f_in =     FileInputStream (model);
37     obj_in = ObjectInputStream (f_in);
38     rbfnetwork = obj_in.readObject ();
39 
40     print "--> Use exsisted model: %s" % model
41 else:
42     # create the model
43     options=splitOptions("-B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1")
44     rbfnetwork = RBFNetwork()
45     rbfnetwork.setOptions(options)
46     rbfnetwork.buildClassifier(train_data)  # only a trained classifier can be evaluated
47 
48     #save model
49     f_out = FileOutputStream (model);
50     obj_out = ObjectOutputStream (f_out);
51     obj_out.writeObject (rbfnetwork);
52     
53     # print out the built model
54     print "--> Generated model:\n"
55 
56 print rbfnetwork
57 print "="*80
58 
59 for i in range(len(sys.argv)-2):
60     test_file = FileReader(sys.argv[i+2])
61     test_data = Instances(test_file)
62     test_data.setClassIndex(train_data.numAttributes() - 1)   
63     buffer = StringBuffer()  # buffer for the predictions
64     output=PlainText()
65     output.setHeader(test_data)
66     output.setBuffer(buffer)
67     
68     attRange = Range()  # attributes to output
69     outputDistribution = Boolean(True)  # we  want distribution
70     evaluation = Evaluation(train_data)
71     evaluation.evaluateModel(rbfnetwork, test_data, [output, attRange, outputDistribution])
72    
73     print "--> Evaluation for %s:\n" % sys.argv[i+2]
74     print evaluation.toSummaryString()
75     print evaluation.toMatrixString()
76     print "-"*80    
77     print "--> Predictions for %s:\n" % sys.argv[i+2]
78     print buffer
79     print "="*80
80 
81 

 

 如果你有大量的类似任务需要运行,你还可以将这些任务提交到任务管理系统如Torque等,然后你就不用管了,等着任务运行完毕后系统给你发送通知邮件吧。

posted on 2010-04-20 19:24  玛瑙河  阅读(4492)  评论(0编辑  收藏  举报