聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用
import numpy as np x = np.random.randint(1, 100, [20, 1]) y = np.zeros(20) k = 3 # 选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心; def initcenter(x, k): return x[0:k].reshape(k) def nearest(kc, i): a = (abs(kc - i)) b= np.where(a == np.min(a)) return b[0][0] def xclassify(x, y, kc): for i in range(x.shape[0]): y[i] = nearest(kc, x[i]) return y # 更新聚类中心:将每个类别中所有对象所对应的均值作为该类别的聚类中心,计算目标函数的值; def kcmean(x, y, kc, k): l = list(kc) flag = False for a in range(k): print(a) m = np.where(y == a) n = np.mean(x[m]) if l[a] != n: l[a] = n flag = True print(l, flag) return (np.array(l), flag) k = 3 kc = initcenter(x, k) flag = True print(x, y, kc, flag) # 判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2 while flag: y = xclassify(x, y, kc) kc, flag = kcmean(x, y, kc, k) print(y, kc, type(kc)) print(x, y) import matplotlib.pyplot as plt plt.scatter(x, x, c=y, s=50, cmap="rainbow"); plt.show()
#用sklearn.cluster.KMeans,鸢尾花花瓣长度数据做聚类并用散点图显示 import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_iris iris = load_iris() a = iris.data a from sklearn.cluster import KMeans est = KMeans(n_clusters = 3) est.fit(a) kc = est.cluster_centers_ y_kmeans = est.predict(a) print(y_kmeans,kc) print(kc.shape,y_kmeans.shape,np.shape) plt.scatter(a[:,0],a[:,1],c=y_kmeans,s=50,cmap='rainbow'); plt.show()