进程或者线程状态

 java的线程状态

public static enum Thread.State
extends Enum<Thread.State>
A thread state. A thread can be in one of the following states:
  • NEW
    A thread that has not yet started is in this state.
  • RUNNABLE
    A thread executing in the Java virtual machine is in this state.未获得处理机但是已ready的线程也处于该状态。
  • BLOCKED
    A thread that is blocked waiting for a monitor lock is in this state.   请求获得锁
  • WAITING
    A thread that is waiting indefinitely for another thread to perform a particular action is in this state.    等待别的线程的响应      
  • TIMED_WAITING
    A thread that is waiting for another thread to perform an action for up to a specified waiting time is in this state.
  • TERMINATED
    A thread that has exited is in this state.   线程结束

A thread can be in only one state at a given point in time. These states are virtual machine states which do not reflect any operating system thread states.

可以通过thread.getState()查看线程所处的状态

linux的进程状态

       D    Uninterruptible sleep (usually IO)

       R    Running or runnable (on run queue)

       S    Interruptible sleep (waiting for an event to complete)

       T    Stopped, either by a job control signal or because it is being traced.

       W    paging (not valid since the 2.6.xx kernel)

       X    dead (should never be seen)

       Z    Defunct ("zombie") process, terminated but not

            reaped by its parent.

R (task_running) : 可执行状态

       只有在该状态的进程才可能在CPU上运行。而同一时刻可能有多个进程处于可执行状态,这些进程的task_struct结构(进程控制块)被放入对应CPU的可执行队列中(一个进程最多只能出现在一个CPU的可执行队列中)。进程调度器的任务就是从各个CPU的可执行队列中分别选择一个进程在该CPU上运行。

       很多操作系统教科书将正在CPU上执行的进程定义为RUNNING状态、而将可执行但是尚未被调度执行的进程定义为READY状态,这两种状态在linux下统一为 TASK_RUNNING状态。

 

2.2  S (task_interruptible): 可中断的睡眠状态

       处于这个状态的进程因为等待某某事件的发生(比如等待socket连接、等待信号量),而被挂起。这些进程的task_struct结构被放入对应事件的等待队列中。当这些事件发生时(由外部中断触发、或由其他进程触发),对应的等待队列中的一个或多个进程将被唤醒。

       通过ps命令我们会看到,一般情况下,进程列表中的绝大多数进程都处于task_interruptible状态(除非机器的负载很高)。毕竟CPU就这么一两个,进程动辄几十上百个,如果不是绝大多数进程都在睡眠,CPU又怎么响应得过来。

 

2.3  D (task_uninterruptible): 不可中断的睡眠状态

       与task_interruptible状态类似,进程处于睡眠状态,但是此刻进程是不可中断的。不可中断,指的并不是CPU不响应外部硬件的中断,而是指进程不响应异步信号。
       绝大多数情况下,进程处在睡眠状态时,总是应该能够响应异步信号的。但是uninterruptible sleep 状态的进程不接受外来的任何信号,因此无法用kill杀掉这些处于D状态的进程,无论是”kill”, “kill -9″还是”kill -15″,这种情况下,一个可选的方法就是reboot。

 

       处于uninterruptible sleep状态的进程通常是在等待IO,比如磁盘IO,网络IO,其他外设IO,如果进程正在等待的IO在较长的时间内都没有响应,那么就被ps看到了,同时也就意味着很有可能有IO出了问题,可能是外设本身出了故障,也可能是比如挂载的远程文件系统已经不可访问了.

 

       而task_uninterruptible状态存在的意义就在于,内核的某些处理流程是不能被打断的。如果响应异步信号,程序的执行流程中就会被插入一段用于处理异步信号的流程(这个插入的流程可能只存在于内核态,也可能延伸到用户态),于是原有的流程就被中断了。

       在进程对某些硬件进行操作时(比如进程调用read系统调用对某个设备文件进行读操作,而read系统调用最终执行到对应设备驱动的代码,并与对应的物理设备进行交互),可能需要使用task_uninterruptible状态对进程进行保护,以避免进程与设备交互的过程被打断,造成设备陷入不可控的状态。这种情况下的task_uninterruptible状态总是非常短暂的,通过ps命令基本上不可能捕捉到。

 

       我们通过vmstat 命令中procs下的b 可以来查看是否有处于uninterruptible 状态的进程。 该命令只能显示数量。

 

       In computer operating systems terminology, a sleeping process can either be interruptible (woken via signals) or uninterruptible (woken explicitly). An uninterruptible sleep state is a sleep state that cannot handle a signal (such as waiting for disk or network IO (input/output)).

 

       When the process is sleeping uninterruptibly, the signal will be noticed when the process returns from the system call or trap.

       -- 这句是关键。 当处于uninterruptibly sleep 状态时,只有当进程从system 调用返回时,才通知signal。

 

       A process which ends up in “D” state for any measurable length of time is trapped in the midst of a system call (usually an I/O operation on a device — thus the initial in the ps output).

 

       Such a process cannot be killed — it would risk leaving the kernel in an inconsistent state, leading to a panic. In general you can consider this to be a bug in the device driver that the process is accessing.

 

2.4  T(task_stopped or task_traced):暂停状态或跟踪状态

       向进程发送一个sigstop信号,它就会因响应该信号而进入task_stopped状态(除非该进程本身处于task_uninterruptible状态而不响应信号)。(sigstop与sigkill信号一样,是非常强制的。不允许用户进程通过signal系列的系统调用重新设置对应的信号处理函数。)
       向进程发送一个sigcont信号,可以让其从task_stopped状态恢复到task_running状态。

       当进程正在被跟踪时,它处于task_traced这个特殊的状态。“正在被跟踪”指的是进程暂停下来,等待跟踪它的进程对它进行操作。比如在gdb中对被跟踪的进程下一个断点,进程在断点处停下来的时候就处于task_traced状态。而在其他时候,被跟踪的进程还是处于前面提到的那些状态。

      

       对于进程本身来说,task_stopped和task_traced状态很类似,都是表示进程暂停下来。
       而task_traced状态相当于在task_stopped之上多了一层保护,处于task_traced状态的进程不能响应sigcont信号而被唤醒。只能等到调试进程通过ptrace系统调用执行ptrace_cont、ptrace_detach等操作(通过ptrace系统调用的参数指定操作),或调试进程退出,被调试的进程才能恢复task_running状态。

 

 

2.5 Z (task_dead - exit_zombie):退出状态,进程成为僵尸进程

       在Linux进程的状态中,僵尸进程是非常特殊的一种,它是已经结束了的进程,但是没有从进程表中删除。太多了会导致进程表里面条目满了,进而导致系统崩溃,倒是不占用其他系统资源。    

       它已经放弃了几乎所有内存空间,没有任何可执行代码,也不能被调度,仅仅在进程列表中保留一个位置,记载该进程的退出状态等信息供其他进程收集,除此之外,僵尸进程不再占有任何内存空间。

      

       进程在退出的过程中,处于TASK_DEAD状态。在这个退出过程中,进程占有的所有资源将被回收,除了task_struct结构(以及少数资源)以外。于是进程就只剩下task_struct这么个空壳,故称为僵尸。

 

       之所以保留task_struct,是因为task_struct里面保存了进程的退出码、以及一些统计信息。而其父进程很可能会关心这些信息。比如在shell中,$?变量就保存了最后一个退出的前台进程的退出码,而这个退出码往往被作为if语句的判断条件。
       当然,内核也可以将这些信息保存在别的地方,而将task_struct结构释放掉,以节省一些空间。但是使用task_struct结构更为方便,因为在内核中已经建立了从pid到task_struct查找关系,还有进程间的父子关系。释放掉task_struct,则需要建立一些新的数据结构,以便让父进程找到它的子进程的退出信息。

 

       子进程在退出的过程中,内核会给其父进程发送一个信号,通知父进程来“收尸”。 父进程可以通过wait系列的系统调用(如wait4、waitid)来等待某个或某些子进程的退出,并获取它的退出信息。然后wait系列的系统调用会顺便将子进程的尸体(task_struct)也释放掉。

       这个信号默认是SIGCHLD,但是在通过clone系统调用创建子进程时,可以设置这个信号。

       如果他的父进程没安装SIGCHLD信号处理函数调用wait或waitpid()等待子进程结束,又没有显式忽略该信号,那么它就一直保持僵尸状态,子进程的尸体(task_struct)也就无法释放掉。

 

       如果这时父进程结束了,那么init进程自动会接手这个子进程,为它收尸,它还是能被清除的。但是如果如果父进程是一个循环,不会结束,那么子进程就会一直保持僵尸状态,这就是为什么系统中有时会有很多的僵尸进程。

 

       当进程退出的时候,会将它的所有子进程都托管给别的进程(使之成为别的进程的子进程)。托管的进程可能是退出进程所在进程组的下一个进程(如果存在的话),或者是1号进程。所以每个进程、每时每刻都有父进程存在。除非它是1号进程。1号进程,pid为1的进程,又称init进程。


linux系统启动后,第一个被创建的用户态进程就是init进程。它有两项使命:
       1、执行系统初始化脚本,创建一系列的进程(它们都是init进程的子孙);
       2、在一个死循环中等待其子进程的退出事件,并调用waitid系统调用来完成“收尸”工作;

       init进程不会被暂停、也不会被杀死(这是由内核来保证的)。它在等待子进程退出的过程中处于task_interruptible状态,“收尸”过程中则处于task_running状态。

posted @ 2016-02-22 23:50  YDDMAX  阅读(1580)  评论(0编辑  收藏  举报