[NOI 2015]荷马史诗

题目描述

追逐影子的人,自己就是影子 ——荷马

Allison 最近迷上了文学。她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的《荷马史诗》。但是由《奥德赛》和《伊利亚特》 组成的鸿篇巨制《荷马史诗》实在是太长了,Allison 想通过一种编码方式使得它变得短一些。

一部《荷马史诗》中有n种不同的单词,从1到n进行编号。其中第i种单 词出现的总次数为wi。Allison 想要用k进制串si来替换第i种单词,使得其满足如下要求:

对于任意的 1 ≤ i, j ≤ n , i ≠ j ,都有:si不是sj的前缀。

现在 Allison 想要知道,如何选择si,才能使替换以后得到的新的《荷马史诗》长度最小。在确保总长度最小的情况下,Allison 还想知道最长的si的最短长度是多少?

一个字符串被称为k进制字符串,当且仅当它的每个字符是 0 到 k − 1 之间(包括 0 和 k − 1 )的整数。

字符串 str1 被称为字符串 str2 的前缀,当且仅当:存在 1 ≤ t ≤ m ,使得str1 = str2[1..t]。其中,m是字符串str2的长度,str2[1..t] 表示str2的前t个字符组成的字符串。

输入输出格式

输入格式:

 

输入的第 1 行包含 2 个正整数 n, k ,中间用单个空格隔开,表示共有 n种单词,需要使用k进制字符串进行替换。

接下来n行,第 i + 1 行包含 1 个非负整数wi ,表示第 i 种单词的出现次数。

 

输出格式:

 

输出包括 2 行。

第 1 行输出 1 个整数,为《荷马史诗》经过重新编码以后的最短长度。

第 2 行输出 1 个整数,为保证最短总长度的情况下,最长字符串 si 的最短长度。

 

输入输出样例

输入样例#1: 复制
4 2
1
1
2
2
输出样例#1: 复制
12
2
输入样例#2: 复制
6 3
1
1
3
3
9
9
输出样例#2: 复制
36
3

说明

【样例说明 1】

用 X(k) 表示 X 是以 k 进制表示的字符串。

一种最优方案:令 00(2) 替换第 1 种单词, 01(2) 替换第 2 种单词, 10(2) 替换第 3 种单词,11(2) 替换第 4 种单词。在这种方案下,编码以后的最短长度为:

1 × 2 + 1 × 2 + 2 × 2 + 2 × 2 = 12

最长字符串si的长度为 2 。

一种非最优方案:令 000(2) 替换第 1 种单词,001(2) 替换第 2 种单词,01(2)替换第 3 种单词,1(2) 替换第 4 种单词。在这种方案下,编码以后的最短长度为:

1 × 3 + 1 × 3 + 2 × 2 + 2 × 1 = 12

最长字符串 si 的长度为 3 。与最优方案相比,文章的长度相同,但是最长字符串的长度更长一些。

【样例说明 2】

一种最优方案:令 000(3) 替换第 1 种单词,001(3) 替换第 2 种单词,01(3) 替换第 3 种单词, 02(3) 替换第 4 种单词, 1(3) 替换第 5 种单词, 2(3) 替换第 6 种单词。

K叉哈弗曼树模板题

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<queue>
 6 using namespace std;
 7 typedef long long lol;
 8 struct Node
 9 {
10  lol x,h;
11  bool operator <(const Node &b)
12  const
13  {
14      return (x>b.x)||(x==b.x&&h>b.h);
15  }
16 };
17 priority_queue<Node>Q;
18 int n,k;
19 lol ans,tmp,h;
20 int main()
21 {int i,j,rest;
22 lol x;
23  cin>>n>>k;
24  for (i=1;i<=n;i++)
25  {
26      scanf("%lld",&x);
27      Q.push((Node){x,0});
28  }
29  rest=0;
30  if ((n-1)%(k-1)) rest=k-1-(n-1)%(k-1);
31  for (i=1;i<=rest;i++)
32  Q.push((Node){0,0});
33  while (Q.size()!=1)
34  {
35      h=0;tmp=0;
36      for (i=1;i<=k;i++)
37      tmp+=Q.top().x,h=max(h,Q.top().h),Q.pop();
38      Q.push((Node){tmp,h+1});
39      ans+=tmp;
40  }
41  cout<<ans<<endl<<Q.top().h;
42 }

 

posted @ 2017-11-05 09:49  Z-Y-Y-S  阅读(150)  评论(0编辑  收藏  举报