hihoCoder 1596 : Beautiful Sequence

Description

Consider a positive integer sequence a[1], ..., a[n] (n ≥ 3). If for every 2 ≤ i ≤ n-1, a[i-1] + a[i+1] ≥ 2 × a[i] holds, then we say this sequence is beautiful.

Now you have a positive integer sequence b[1], ..., b[n]. Please calculate the probability P that the resulting sequence is beautiful after uniformly random shuffling sequence b.

You're only required to output (P × (n!)) mod 1000000007. (Obviously P × (n!) is an integer)

Input

First line contains an integer n. (3 ≤ n ≤ 60)

Following n lines contain integers b[1], b[2], ..., b[n]. (1 ≤ b[i] ≤ 1000000000)

Output

Output (P × (n!)) mod 1000000007.

Sample Input

4
1
2
1
3

Sample Output

8
https://hihocoder.com/problemset/problem/1596
dp鬼题
题目条件可化为a[i+1]-a[i]>=a[i]-a[i-1]
考虑排序再做分配
根据分析我们发现最后的高度序列是一个勾函数,先减小后增大
我们讨论b[i-1],b[i],b[i+1]的情况
显然i-1和i+1不可能同时大于i
只可能一个大于i一个小于,或两个都大于
但是两个都大于的情况显然只有一次,两边是不会有的
如5 3 5 1 3 5
那么就出现了两个都小于的情况
那么我们就可以dp
令f[i][j][k][l]表示最左边两个为i,j 最右边两个为k,l
我们先将最小值放入f[1][0][1][0]=1
接下来要放的数为max(i,k)+1,为什么?因为是排过序的,从小到大放就行了
判断是否满足:
a[i+1]-a[i]>=a[i]-a[i-1]
还有一个细节:
当有多个最小值时,显然不能直接dp,以最小值数量为l=3举例
因为直接dp只能得到4种,而实际有6种(此题鬼处)
所以把所有最小值缩为一个,最后乘l!
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<cmath>
 6 using namespace std;
 7 int Mod=1000000007;
 8 long long f[61][61][61][61],a[61],p[61],tmp,ans;
 9 int n;
10 int main()
11 {int i,j,k,l=0;
12     cin>>n;
13     for (i=1;i<=n;i++)
14     {
15         scanf("%lld",&a[i]);
16     }
17     sort(a+1,a+n+1);
18     p[0]=1;
19     for (i=1;i<=n;i++)
20     p[i]=(p[i-1]*i)%Mod;
21     for (i=1;i<=n;i++)
22     if (a[i]==a[1]) l++;
23     tmp=p[l];
24     for (i=2;i<=n-l+1;i++)
25     a[i]=a[i+l-1];
26     n=n-l+1;
27     f[1][0][1][0]=1;
28     for (i=1;i<=n;i++)
29     {
30         for (j=0;j<=n-1;j++)
31         {
32             for (k=1;k<=n;k++)
33             {
34                 for (l=0;l<=n-1;l++)
35                 {
36                     int z=max(i,k)+1;
37                     if (z==n+1)
38                     {
39                         ans+=f[i][j][k][l];
40                         ans%=Mod;
41                         continue;
42                     }
43                     if (a[z]-a[k]>=a[k]-a[l]||l==0)
44                     f[i][j][z][k]+=f[i][j][k][l],f[i][j][z][k]%=Mod;
45                     if (a[z]-a[i]>=a[i]-a[j]||j==0)
46                     f[z][i][k][l]+=f[i][j][k][l],f[z][i][k][l]%=Mod;
47                 }
48             }
49         }
50     }
51     cout<<(ans*tmp)%Mod;
52 }

 

posted @ 2017-10-01 22:17  Z-Y-Y-S  阅读(404)  评论(0编辑  收藏  举报