[SCOI2005]最大子矩阵

题目描述

这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。

输入输出格式

输入格式:

第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。

输出格式:

只有一行为k个子矩阵分值之和最大为多少。

输入输出样例

输入样例#1:
3 2 2
1 -3
2 3
-2 3
输出样例#1:
9

分m=1和m=2两种情况考虑。

m=1时,预处理出前缀和sum[]。

设f[i][j]为到达第i格,已经放了j个子矩阵的最大和,

那么每次先把f[i][j]的值设为f[i-1][j](第i个元素不属于第j个子矩阵)

剩下的情况就是第i个元素属于第j个子矩阵了。

这时候用max(f[p-1][j-1]+(sum[i]-sum[p-1]), 1<=p<=i)更新f[i][j]的最大值,即枚举第j个子矩阵的起始点。

最终答案为f[n][k]。(边界条件为f[0][j]=0,包含空矩阵)

m=2时,预处理出分别列的前缀和sum1[],sum2[]。

设f[i][j][l]为在第1列到达第i格,第2列到达第j格,已经放了l个子矩阵的最大和,

那么每次先把f[i][j][l]的值设为max(f[i-1][j][l],f[i][j-1][l])(第i行第1列不属于子矩阵或第j行第2列不属于子矩阵,两者取较大值)

剩下的情况就是第i行第1列和第j行第2列都属于子矩阵了。

分两种情况:

一、第i行第1列和第j行第2列属于不同的子矩阵

分别枚举第i行第1列所在子矩阵的起始点和第j行第2列所在子矩阵的起始点并更新答案,

即用max(f[p-1][j][l-1]+(sum1[i]-sum1[p-1]), 1<=p<=i)和max(f[i][p-1][l-1]+(sum2[j]-sum2[p-1]),1<=p<=j)更新f[i][j]的最大值。

二、第i行第1列和第j行第2列属于同一子矩阵

仅当i==j时才包含这种情况(因为i和j要作为当前状态中子矩阵的末尾)。这时候这个子矩阵的列数必定为2。

还是一样枚举子矩阵的起始点,

在i==j的条件下用max(f[p-1][p-1][l-1]+(sum1[i]-sum1[p-1])+(sum2[j]-sum2[p-1]),1<=p<=i)更新答案。

最后答案为f[n][n][k](边界条件为f[0][0][l]=0,包含空矩阵)

 1 #include<iostream>
 2 #include<algorithm>
 3 #include<cstring>
 4 #include<cstdio>
 5 using namespace std;
 6 int f1[101][101],f2[101][101][101],a[101][101],sum1[101],sum2[101];
 7 int n,m,k;
 8 int main()
 9 {int i,j,l,p;
10     cin>>n>>m>>k;
11     for (i=1;i<=n;i++)
12     {
13         for (j=1;j<=m;j++)
14         {
15          scanf("%d",&a[i][j]);
16          if (j==1) sum1[i]=sum1[i-1]+a[i][j];
17          else sum2[i]=sum2[i-1]+a[i][j];
18          }
19     }
20     if (m==1)
21     {
22         for (i=1;i<=n;i++)
23         for (j=1;j<=k;j++)
24         {f1[i][j]=f1[i-1][j];
25             for (l=1;l<=i;l++)
26              f1[i][j]=max(f1[i][j],f1[l-1][j-1]+sum1[i]-sum1[l-1]);
27         } 
28         cout<<f1[n][k];
29     }
30     else 
31     {
32       for (i=1;i<=n;i++)
33       {
34           for (j=1;j<=n;j++)
35           {
36                for (l=1;l<=k;l++)
37                {f2[i][j][l]=max(f2[i-1][j][l],f2[i][j-1][l]);
38                    for (p=1;p<=i;p++)
39                     f2[i][j][l]=max(f2[i][j][l],f2[p-1][j][l-1]+sum1[i]-sum1[p-1]);
40                    for (p=1;p<=j;p++)
41                     f2[i][j][l]=max(f2[i][j][l],f2[i][p-1][l-1]+sum2[j]-sum2[p-1]); 
42                    if (i==j)
43                    for (p=1;p<=i;p++)
44                     f2[i][j][l]=max(f2[i][j][l],f2[p-1][p-1][l-1]+sum2[j]-sum2[p-1]+sum1[i]-sum1[p-1]); 
45                }
46           }
47       }    
48       cout<<f2[n][n][k];
49     }
50 } 

 

posted @ 2017-08-09 17:10  Z-Y-Y-S  阅读(251)  评论(0编辑  收藏  举报