JVM

三种参数类型

  jvm的参数类型分为三类,分别是:
  标准参数
  -help
  -version
  -X参数 (非标准参数)
  -Xint
  -Xcomp
  -XX参数(使用率较高)
  -XX:newSize
  -XX:+UseSerialGC

-server 与- client

  可以通过-server或-client设置jvm的运行参数。
  它们的区别是Server VM的初始堆空间会大一些,默认使用的是并行垃圾回收器,启动慢运行快。
  Client VM相对来讲会保守一些,初始堆空间会小一些,使用串行的垃圾回收器,它的目标是为了让JVM的启
  动速度更快,但运行速度会比Serverm模式慢些。
  JVM在启动的时候会根据硬件和操作系统自动选择使用Server还是Client类型的JVM。
  32位操作系统
  如果是Windows系统,不论硬件配置如何,都默认使用Client类型的JVM。
  如果是其他操作系统上,机器配置有2GB以上的内存同时有2个以上CPU的话默认使用server模式,否则
  使用client模式。
  64位操作系统
  只有server类型,不支持client类

JVM什么时候启动

  

  类被调用时    先启动JVM线程---》再启动其他的线程(main)

运行时数据区域

程序计数器

当前线程执行的字节码的行号指示器,占用空间小,也无法干涉

虚拟机栈

每个线程私有的,线程在运行时,在执行每个方法的时候都会打包成一个栈帧,存储了局部变量表,操作数栈,动态链接,方法出口等信息,然后放入栈。每个时刻正在执行的当前方法就是虚拟机栈顶的栈桢。方法的执行就对应着栈帧在虚拟机栈中入栈和出栈的过程。

栈桢大小缺省为1M,可用参数 –Xss调整大小,例如-Xss256k

几乎所有对象都分配在这里,也是垃圾回收发生的主要区域,可用以下参数调整:

-Xms:堆的最小值;

-Xmx:堆的最大值;

-Xmn:新生代的大小;

-XX:NewSize;新生代最小值;

-XX:MaxNewSize:新生代最大值;

例如- Xmx256m

方法区/永久代

用于存储已经被虚拟机加载的类信息,常量("zdy","123"等),静态变量(static变量)等数据,可用以下参数调整:

jdk1.7及以前:-XX:PermSize;-XX:MaxPermSize;

jdk1.8以后:-XX:MetaspaceSize; -XX:MaxMetaspaceSize

jdk1.8以后大小就只受本机总内存的限制

如:-XX:MaxMetaspaceSize=3M

直接内存

不是虚拟机运行时数据区的一部分,也不是java虚拟机规范中定义的内存区域;如果使用了NIO,这块区域会被频繁使用,在java堆内可以用directByteBuffer对象直接引用并操作;

这块内存不受java堆大小限制,但受本机总内存的限制,可以通过-XX:MaxDirectMemorySize来设置(默认与堆内存最大值一样),所以也会出现OOM异常。

各个版本内存区域的变化

 

 

 

 

 

 

 

 

站在线程角度来看

 

 

 

 

 

深入辨析堆和栈

功能

  • Ø 以栈帧的方式存储方法调用的过程,并存储方法调用过程中基本数据类型的变量(int、short、long、byte、float、double、boolean、char等)以及对象的引用变量,其内存分配在栈上,变量出了作用域就会自动释放;
  • Ø 而堆内存用来存储Java中的对象。无论是成员变量,局部变量,还是类变量,它们指向的对象都存储在堆内存中;

线程独享还是共享

  • Ø 栈内存归属于单个线程,每个线程都会有一个栈内存,其存储的变量只能在其所属线程中可见,即栈内存可以理解成线程的私有内存。
  • Ø 堆内存中的对象对所有线程可见。堆内存中的对象可以被所有线程访问。

空间大小

栈的内存要远远小于堆内存

栈上分配

虚拟机提供的一种优化技术,基本思想是,对于线程私有的对象,将它打散分配在栈上,而不分配在堆上。好处是对象跟着方法调用自行销毁,不需要进行垃圾回收,可以提高性能。

栈上分配需要的技术基础,逃逸分析。逃逸分析的目的是判断对象的作用域是否会逃逸出方法体。注意,任何可以在多个线程之间共享的对象,一定都属于逃逸对象。

public void test(int x,inty ){

String x = “”;

User u = ….

…..

}

User类型的对象u就没有逃逸出方法test。

public  User test(int x,inty ){

String x = “”;

User u = ….

…..

return u;

}

User类型的对象u就逃逸出方法test。

如何启用栈上分配

-server JVM运行的模式之一, server模式才能进行逃逸分析, JVM运行的模式还有mix/client

-Xmx10m和-Xms10m:堆的大小

-XX:+DoEscapeAnalysis:启用逃逸分析(默认打开)

-XX:+PrintGC:打印GC日志

-XX:+EliminateAllocations:标量替换(默认打开)

-XX:-UseTLAB 关闭本地线程分配缓冲

TLAB: ThreadLocalAllocBuffer,具体解释参见下文《虚拟机中的对象---对象的分配----2)》

对栈上分配发生影响的参数就是三个,-server、-XX:+DoEscapeAnalysis和-XX:+EliminateAllocations,任何一个发生变化都不会发生栈上分配,因为启用逃逸分析和标量替换默认是打开的,所以,在我们的例子中,JVM的参数只用-server一样可以有栈上替换的效果(以Mark老师机器上JDK1.8为例,其他版本JDK请自行尝试)。

栈上分配的效果

同样的User的对象实例,分配100000000次,启用栈上分配,只需6ms,不启用,需要3S。

虚拟机中的对象

对象的分配

虚拟机遇到一条new指令时:

1)

先执行相应的类加载过程。

2)

接下来虚拟机将为新生对象分配内存。为对象分配空间的任务等同于把一块确定大小的内存从Java堆中划分出来。

如果Java堆中内存是绝对规整的,所有用过的内存都放在一边,空闲的内存放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间那边挪动一段与对象大小相等的距离,这种分配方式称为“指针碰撞”。

如果Java堆中的内存并不是规整的,已使用的内存和空闲的内存相互交错,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称为“空闲列表”。

选择哪种分配方式由Java堆是否规整决定,而Java堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。

除如何划分可用空间之外,还有另外一个需要考虑的问题是对象创建在虚拟机中是非常频繁的行为,即使是仅仅修改一个指针所指向的位置,在并发情况下也并不是线程安全的,可能出现正在给对象A分配内存,指针还没来得及修改,对象B又同时使用了原来的指针来分配内存的情况。

解决这个问题有两种方案,一种是对分配内存空间的动作进行同步处理——实际上虚拟机采用CAS配上失败重试的方式保证更新操作的原子性;

另一种是把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块私有内存,也就是本地线程分配缓冲(Thread Local Allocation Buffer,TLAB),如果设置了虚拟机参数 -XX:UseTLAB,在线程初始化时,同时也会申请一块指定大小的内存,只给当前线程使用,这样每个线程都单独拥有一个Buffer,如果需要分配内存,就在自己的Buffer上分配,这样就不存在竞争的情况,可以大大提升分配效率,当Buffer容量不够的时候,再重新从Eden区域申请一块继续使用。

TLAB的目的是在为新对象分配内存空间时,让每个Java应用线程能在使用自己专属的分配指针来分配空间,减少同步开销。

TLAB只是让每个线程有私有的分配指针,但底下存对象的内存空间还是给所有线程访问的,只是其它线程无法在这个区域分配而已。当一个TLAB用满(分配指针top撞上分配极限end了),就新申请一个TLAB。

3)

内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(如int值为0,boolean值为false等等)。这一步操作保证了对象的实例字段在Java代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。

4)

接下来,虚拟机要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的GC分代年龄等信息。这些信息存放在对象的对象头之中。

5)

在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从Java程序的视角来看,对象创建才刚刚开始,所有的字段都还为零值。所以,一般来说,执行new指令之后会接着把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。

对象的内存布局

在HotSpot虚拟机中,对象在内存中存储的布局可以分为3块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。

对象头包括两部分信息,第一部分用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等。

对象头的另外一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。

第三部分对齐填充并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用。由于HotSpot VM的自动内存管理系统要求对对象的大小必须是8字节的整数倍。当对象其他数据部分没有对齐时,就需要通过对齐填充来补全。

对象的访问定位

建立对象是为了使用对象,我们的Java程序需要通过栈上的reference数据来操作堆上的具体对象。目前主流的访问方式有使用句柄和直接指针两种。

如果使用句柄访问的话,那么Java堆中将会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自的具体地址信息。

如果使用直接指针访问, reference中存储的直接就是对象地址。

这两种对象访问方式各有优势,使用句柄来访问的最大好处就是reference中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要修改。

使用直接指针访问方式的最大好处就是速度更快,它节省了一次指针定位的时间开销,由于对象的访问在Java中非常频繁,因此这类开销积少成多后也是一项非常可观的执行成本。

对Sun HotSpot而言,它是使用直接指针访问方式进行对象访问的。

 

堆参数设置和内存溢出实战

堆溢出:

参数 : -Xms5m -Xmx5m -XX:+PrintGC

出现java.lang.OutOfMemoryError: GC overhead limit exceeded  一般是(某个循环里可能性最大)在不停的分配对象,但是分配的太多,把堆撑爆了。

出现java.lang.OutOfMemoryError: Java heap space一般是分配了巨型对象

栈溢出

参数:-Xss256k

java.lang.StackOverflowError  一般的方法调用是很难出现的,如果出现了要考虑是否有无限递归。

虚拟机栈带给我们的启示:方法的执行因为要打包成栈桢,所以天生要比实现同样功能的循环慢,所以树的遍历算法中:递归和非递归(循环来实现)都有存在的意义。递归代码简洁,非递归代码复杂但是速度较快。

 

 

垃圾收集器与内存分配策略

为什么要了解GC和内存分配策略

1、面试需要

2、GC对应用的性能是有影响的;

3、写代码有好处

判断对象的存活

引用计数法:快,方便,实现简单,缺点:对象相互引用时,很难判断对象是否改回收。

可达性分析

面试时重要的知识点,牢记

来判定对象是否存活的。这个算法的基本思路就是通过一系列的称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连时,则证明此对象是不可用的。

作为GC Roots的对象包括下面几种:

l  虚拟机栈(栈帧中的本地变量表)中引用的对象。

l  方法区中类静态属性引用的对象。

l  方法区中常量引用的对象。

l  本地方法栈中JNI(即一般说的Native方法)引用的对象。

各种引用

强引用

一般的Object obj = new Object() ,就属于强引用。

软引用 SoftReference

一些有用但是并非必需,用软引用关联的对象,系统将要发生OOM之前,这些对象就会被回收。参见代码:

 

 

 

运行结果

 

 

 

弱引用 WeakReference

一些有用(程度比软引用更低)但是并非必需,用弱引用关联的对象,只能生存到下一次垃圾回收之前,GC发生时,不管内存够不够,都会被回收。

参看代码:

 

 

 

 

 

 

虚引用 PhantomReference

幽灵引用,最弱,被垃圾回收的时候收到一个通知

 

注意:软引用 SoftReference和弱引用 WeakReference,可以用在内存资源紧张的情况下以及创建不是很重要的数据缓存。当系统内存不足的时候,缓存中的内容是可以被释放的。

例如,一个程序用来处理用户提供的图片。如果将所有图片读入内存,这样虽然可以很快的打开图片,但内存空间使用巨大,一些使用较少的图片浪费内存空间,需要手动从内存中移除。如果每次打开图片都从磁盘文件中读取到内存再显示出来,虽然内存占用较少,但一些经常使用的图片每次打开都要访问磁盘,代价巨大。这个时候就可以用软引用构建缓存。

 

 

 

标记-清除算法(Mark-Sweep)

算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。

它的主要不足空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

复制算法(Copying)

将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为了原

来的一半。

标记-整理算法(Mark-Compact)

首先标记出所有需要回收的对象,在标记完成后,后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。

把算法们都用上

当前商业虚拟机的垃圾收集都采用“分代收集”(Generational Collection)算法,这种算法并没有什么新的思想,只是根据对象存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。

专门研究表明,新生代中的对象98%是“朝生夕死”的,所以并不需要按照1:1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中一块Survivor[1]。当回收时,将Eden和Survivor中还存活着的对象一次性地复制到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8:1,也就是每次新生代中可用内存空间为整个新生代容量的90%(80%+10%),只有10%的内存会被“浪费”。当然,98%的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有不多于10%的对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。

在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记—清理”或者“标记—整理”算法来进行回收。

请记住下图的垃圾收集器和之间的连线关系。

 

 

 

垃圾回收器列表

并行:垃圾收集的多线程的同时进行。

并发:垃圾收集的多线程和应用的多线程同时进行。

垃圾回收器工作示意图

Serial/Serial Old

最古老的,单线程,独占式,成熟,适合单CPU  服务器

-XX:+UseSerialGC 新生代和老年代都用串行收集器

-XX:+UseParNewGC 新生代使用ParNew,老年代使用Serial Old

-XX:+UseParallelGC 新生代使用ParallerGC,老年代使用Serial Old

 

ParNew

和Serial基本没区别,唯一的区别:多线程,多CPU的,停顿时间比Serial少

-XX:+UseParNewGC 新生代使用ParNew,老年代使用Serial Old

 

Parallel Scavenge(ParallerGC)/Parallel Old

关注吞吐量的垃圾收集器,高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。

所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。

-XX:+UseParallerOldGC:新生代使用ParallerGC,老年代使用Parallel Old

-XX:MaxGCPauseMills  :参数允许的值是一个大于0的毫秒数,收集器将尽可能地保证内存回收花费的时间不超过设定值。不过大家不要认为如果把这个参数的值设置得稍小一点就能使得系统的垃圾收集速度变得更快,GC停顿时间缩短是以牺牲吞吐量和新生代空间来换取的:系统把新生代调小一些,收集300MB新生代肯定比收集500MB快吧,这也直接导致垃圾收集发生得更频繁一些,原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也降下来了。

-XX:GCTimeRatio参数的值应当是一个大于0且小于100的整数,也就是垃圾收集时间占总时间的比率,相当于是吞吐量的倒数。如果把此参数设置为19,那允许的最大GC时间就占总时间的5%(即1/(1+19)),默认值为99,就是允许最大1%(即1/(1+99))的垃圾收集时间。

-XX:+UseAdaptiveSizePolicy 当这个参数打开之后,就不需要手工指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象年龄(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种调节方式称为GC自适应的调节策略。

如果对于收集器运作原来不太了解,手工优化存在困难的时候,使用Parallel Scavenge收集器配合自适应调节策略,把内存管理的调优任务交给虚拟机去完成将是一个不错的选择。只需要把基本的内存数据设置好(如-Xmx设置最大堆),然后使用MaxGCPauseMillis参数(更关注最大停顿时间)或GCTimeRatio(更关注吞吐量)参数给虚拟机设立一个优化目标,那具体细节参数的调节工作就由虚拟机完成了。自适应调节策略也是Parallel Scavenge收集器与ParNew收集器的一个重要区别。

 

Concurrent Mark Sweep (CMS)

收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。

从名字(包含“Mark Sweep”)上就可以看出,CMS收集器是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤,包括:

初始标记-短暂,仅仅只是标记一下GC Roots能直接关联到的对象,速度很快。

并发标记-和用户的应用程序同时进行,进行GC RootsTracing的过程

重新标记-短暂,为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。

并发清除

由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。

-XX:+UseConcMarkSweepGC ,表示新生代使用ParNew,老年代的用CMS

 

G1

-XX:+UseG1GC

未来的垃圾回收

ZGC通过技术手段把stw的情况控制在仅有一次,就是第一次的初始标记才会发生,这样也就不难理解为什么GC停顿时间不随着堆增大而上升了,再大我也是通过并发的时间去回收了

关键技术

  1. 有色指针(Colored Pointers
  2. 加载屏障(Load Barrier

 

posted @ 2019-09-02 16:45  乔儿的终极小迷弟  阅读(155)  评论(0编辑  收藏  举报