【题解】保安站岗[P2458]皇宫看守[LOJ10157][SDOI2006]
【题解】保安站岗[P2458]皇宫看守[LOJ10157][SDOI2006]
传送门:皇宫看守\([LOJ10157]\) 保安站岗 \([P2458]\) \([SDOI2006]\)
【题目描述】
给你一棵树,要求树上每个点都要有人看守,在不同的点安排守卫所需 \(Monney\) 不同。
守卫站在某个端点上时,他除了能看守住他所站的那个点,也能看守通过一条边与之相连的另一个端点,因此一个守卫可能同时能看守住多个点,因此没有必要在每个端点上都安排守卫。
要求在能够看守住所有点的前提下,使得花费的 \(Monney\) 最少。
【输入】
第 \(1\) 行一个整数 \(n\),表示树中节点的数目。
接下来 \(n\) 行,每行描述每个结点的信息,依次为:该结点标号 \(i\),在该结点安置保安所需的经费 \(k_i\),该边的儿子数 \(m\),接下来 \(m\) 个数,分别是这个节点的 \(m\) 个儿子的标号 \(r_1,r_2,r_3...r_m\)。
对于一个 \(n\) 个结点的树,其结点标号在 \(1\) 到 \(n\) 之间,且标号不重复。
【输出】
输出一行一个整数,表示花费的最少 \(Monney\) 。
【样例】
样例输入:
6
1 30 3 2 3 4
2 16 2 5 6
3 5 0
4 4 0
5 11 0
6 5 0
样例输出:
25
【数据范围】
\(100\%\) \(1 \leqslant N \leqslant 1500,1 \leqslant k_i \leqslant 10000\)
【分析】
一道经典的树形 \(dp\) 。
用 \(dp[i][0]\) 表示:自己不是守卫,父亲不是守卫,儿子是守卫。
用 \(dp[i][1]\) 表示:自己是守卫,父亲不知道,儿子不知道。
用 \(dp[i][2]\) 表示:自己不是守卫,父亲是守卫,儿子不知道。
在树上 \(dfs\) 遍历。
每到达一个 \(x\),先对其进行初始化:\(dp[x][1]=w[x],dp[x][2]=dp[x][0]=0\)(其中 \(w[x]\) 为在 \(x\) 这个位置放守卫所需 \(Monney\))。
然后遍历它的若干个儿子结点,更新三个 \(dp[x][?]\):
\((1).\) \(dp[x][1]\):\(x\) 是守卫,\(x\) 的父亲不知道,\(x\) 的儿子 \(to\) 不知道。
对于 \(to\) 来说,\(to\) 的父亲一定是守卫,所以 \(dp[to][0]\) 就不统计了,于是有:\(dp[x][1]=\sum_{to \in son[x]} min(dp[to][1],dp[to][2])\)
\((2).\) \(dp[x][2]\):\(x\) 不是守卫,\(x\) 的父亲是守卫,\(x\) 的儿子 \(to\) 不知道
对于 \(to\) 来说,\(to\) 的父亲不可能是守卫,于是有:\(dp[x][2]=\sum_{to \in son[x]} min(dp[to][1],dp[to][0])\)
\((3).\) \(dp[x][0]\):\(x\) 不是守卫,\(x\) 的父亲不是守卫,\(x\) 的儿子 \(to\) 是守卫
这是最复杂的情况,需要在 \(son[x]\) 选出一个 \(dp[to][1]\),而其他的儿子则是 \(min(dp[to][1],dp[to][0])\)。
可以对所有儿子维护一个 \(dp[to][1]\) 与 \(min(dp[to][1],dp[to][0])\) 的差值 \(dd\),然后在最后把最小的差值 \(dd_{min}\) 加到 \(dp[to][0]\) 上即可。
于是 \(dd={(dp[r][1]-min(dp[r][0],dp[to][1]))}^{r \in son[x]}_{min},\) \(dp[to][0]=\sum_{to \in son[x]} min(dp[r][1],dp[r][0])+dd\)
【Code】
#include<algorithm>
#include<cstring>
#include<cstdio>
#define R register int
using namespace std;
struct QAQ{int to,next;}a[1505];
int m,pan[1505],n,t,w[1505],dp[1505][3],head[1505];
inline void add(int x,int y){a[++t].to=y,a[t].next=head[x],head[x]=t;}
//dp[i][0] 自己不是守卫,父亲不是守卫,儿子是守卫
//dp[i][1] 自己是守卫, 父亲不知道, 儿子不知道
//dp[i][2] 自己不是守卫,父亲是守卫, 儿子不知道
inline void dfs(int x){
R i,to,dd=0xfffffff;
dp[x][1]=w[x];dp[x][2]=0;dp[x][0]=0;
for(i=head[x];i;i=a[i].next){
dfs(to=a[i].to);
dd=min(dd,dp[to][1]-min(dp[to][0],dp[to][1]));//维护最小的差值
dp[x][0]+=min(dp[to][0],dp[to][1]);
//若x守卫是儿子dp[x][0],找到花费最小的dd 加上其他的儿子:min(1.孙子dp[to][0]。2.自己dp[to][1]。)
dp[x][1]+=min(dp[to][1],dp[to][2]);
//若x有守卫dp[x][1],加上儿子:min(1.父亲dp[to][2]。2.自己dp[to][1]。)
dp[x][2]+=min(dp[to][0],dp[to][1]);
//若守卫是父亲dp[x][2],加上儿子:min(1.孙子dp[to][0]。2.自己dp[to][1]。)
}
dp[x][0]+=dd;
}
int main(){
memset(dp,127,sizeof(dp));
scanf("%d",&n);
R i,j,a,k,r;
for(i=1;i<=n;i++){
scanf("%d%d%d",&a,&k,&m);w[a]=k;
for(j=1;j<=m;j++)scanf("%d",&r),pan[r]=1,add(a,r);
}
for(i=1;i<=n;i++)
if(!pan[i]){
dfs(i);
printf("%d",min(dp[i][1],dp[i][0]));
return 0;
}
}