数学图形(1.46)高次方程曲线

      这一节让大家回忆下高中所学的数学.整式方程未知数次数最高项次数高于2次的方程,称为高次方程。高次方程解法思想是通过适当的方法,把高次方程化为次数较低的方程求解。对于5次及以上的一元高次方程没有通用的代数解法和求根公式(即通过各项系数经过有限次四则运算和乘方和开方运算无法求解),这称为阿贝尔定理。不过这一节中我的目的不是求方程的根,而是绘制出N次函数的曲线.

      高次方程一般形式可以写为: x^n+bnx^n-1+-------b1x+b0=0
      数学课中我们学过,二次方程的曲线是一个抛物线,三次方程的曲线是一个S形,那么N次方程的曲线会有N-1个弯,这里将展示下几个N次方程的曲线,其中N在2到5.相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.
 
二次函数:
#http://www.bb.ustc.edu.cn/jpkc/xiaoji/wjf/kj/

vertices = 360

x = from (-5) to (5)

y = 3*x*x + 4*x + 1

三次函数:
#http://www.bb.ustc.edu.cn/jpkc/xiaoji/wjf/kj/

vertices = 360

x = from (-2) to (4)

y = x^3 - 4*x*x + 5*x + 6

四次函数:
#http://www.bb.ustc.edu.cn/jpkc/xiaoji/wjf/kj/

vertices = 360

x = from (-2) to (4)

y = x^4 - x^3*5 + 5*x*x + 6*x + 1

五次函数:
#http://www.bb.ustc.edu.cn/jpkc/xiaoji/wjf/kj/

vertices = 360

x = from (-2) to (3.4)

y = -x^5 + x^4*3 + x^3*3 - 6*x*x + 2

 
posted on 2014-09-23 13:55  叶飞影  阅读(5850)  评论(0编辑  收藏  举报