数学图形(1.11) 玫瑰线
玫瑰线方程
玫瑰线的极坐标方程为:ρ=a* sin(nθ),ρ=a*cos(nθ)
用直角坐标方程表示为: x=a* sin(nθ)* cos(θ), y=a*sin(nθ)* sin(θ)
根据三角函数的特性可知,玫瑰线是一种具有周期性且包络线为圆弧的曲线,曲线的几何结构取决于方程参数的取值,不同的参数决定了玫瑰线的大小、叶子的数目和周期的可变性。
这里参数a(包络半径)控制叶子的长短,参数n控制叶子的个数、叶子的大小及周期的长短。
如对于方程式
ρ=5* sin(3*θ)、
ρ=5* sin(2*θ)、
ρ=5* sin(3*θ/2),
分别对应的是三叶、四叶和六叶玫瑰线。
我觉得应该将其称为菊花线更为合适,因为比起玫瑰来,它更像一朵绽放的菊花.
相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815
玫瑰线.
vertices = 18000 t = from 0 to (2*PI) a = rand_int2(2, 50) x = sin(a*t)*cos(t) y = sin(a*t)*sin(t) r = 10; x = x*r y = y*r
玫瑰线(20叶)
vertices = 3600 t = from 0 to (2*PI) r = 10 x = r*sin(10*t)*cos(t) y = r*sin(10*t)*sin(t)
三叶线.
vertices = 3600 t = from 0 to PI x = sin(3*t)*cos(t) y = sin(3*t)*sin(t) r = 10; x = x*r y = y*r z = z*r
四叶线
vertices = 3600 t = from 0 to (2*PI) x = sin(2*t)*cos(t) y = sin(2*t)*sin(t) r = 10; x = x*r y = y*r z = z*r
玫瑰线变异
vertices = 360 t = from 0 to 360 a = 5 x = sin(a*t)*cos(t) y = sin(a*t)*sin(t) r = 10 x = x*r y = y*r z = z*r