本博客rss订阅地址: http://feed.cnblogs.com/blog/u/147990/rss

LeetCode:Unique Paths I II

Unique Paths

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

算法1:最容易想到的是递归解法,uniquePaths(m, n) = uniquePaths(m, n-1) + uniquePaths(m-1, n), 递归结束条件是m或n等于1,这个方法oj超时了

1 class Solution {
2 public:
3     int uniquePaths(int m, int n) {
4         if(m == 1 || n == 1)return 1;
5         else return  uniquePaths(m, n - 1) + uniquePaths(m - 1, n);
6     }
7 };

算法2:动态规划,算法1的递归解法中,其实我们计算了很多重复的子问题,比如计算uniquePaths(4, 5) 和 uniquePaths(5, 3)时都要计算子问题uniquePaths(3, 2),再者由于uniquePaths(m, n) = uniquePaths(n, m),这也使得许多子问题被重复计算了。要保存子问题的状态,这样很自然的就想到了动态规划方法,设dp[i][j] = uniquePaths(i, j), 那么动态规划方程为:

  • dp[i][j] = dp[i-1][j] + dp[i][j-1]
  • 边界条件:dp[i][1] = 1, dp[1][j] = 1
 1 class Solution {
 2 public:
 3     int uniquePaths(int m, int n) {
 4         vector<vector<int> > dp(m+1, vector<int>(n+1, 1));
 5         for(int i = 2; i <= m; i++)
 6             for(int j = 2; j <= n; j++)
 7                 dp[i][j] = dp[i-1][j] + dp[i][j-1];
 8         return dp[m][n];
 9     }
10 };

上述过程其实是从左上角开始,逐行计算到达每个格子的路线数目,由递推公式可以看出,到达当前格子的路线数目和两个格子有关:1、上一行同列格子的路线数目;2、同一行上一列格子的路线数目。据此我们可以优化上面动态规划方法的空间:

 1 class Solution {
 2 public:
 3     int uniquePaths(int m, int n) {
 4         vector<int>dp(n+1, 1);
 5         for(int i = 2; i <= m; i++)
 6             for(int j = 2; j <= n; j++)
 7                 dp[j] =  dp[j] + dp[j-1];
 8         return dp[n];
 9     }
10 };

算法3:其实这个和组合数有关,对于m*n的网格,从左上角走到右下角,总共需要走m+n-2步,其中必定有m-1步是朝右走,n-1步是朝下走,那么这个问题的答案就是组合数:, 这里需要注意的是求组合数时防止乘法溢出         本文地址

 1 class Solution {
 2 public:
 3     int uniquePaths(int m, int n) {
 4         return combination(m+n-2, m-1);
 5     }
 6     
 7     int combination(int a, int b)
 8     {
 9         if(b > (a >> 1))b = a - b;
10         long long res = 1;
11         for(int i = 1; i <= b; i++)
12             res = res * (a - i + 1) / i;
13         return res;
14     }
15 };

 


 

Unique Paths II

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

这一题可以完全采用和上一题一样的解法,只是需要注意dp的初始化值,和循环的起始值

 1 class Solution {
 2 public:
 3     int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
 4         int m = obstacleGrid.size(), n = obstacleGrid[0].size();
 5         vector<int>dp(n+1, 0);
 6         dp[1] = (obstacleGrid[0][0] == 0) ? 1 : 0;
 7         for(int i = 1; i <= m; i++)
 8             for(int j = 1; j <= n; j++)
 9                 if(obstacleGrid[i-1][j-1] == 0)
10                     dp[j] = dp[j] + dp[j-1];
11                 else dp[j] = 0;
12         return dp[n];
13     }
14 };

 

【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3704091.html

posted @ 2014-05-02 15:25  tenos  阅读(791)  评论(0编辑  收藏  举报

本博客rss订阅地址: http://feed.cnblogs.com/blog/u/147990/rss

公益页面-寻找遗失儿童