本博客rss订阅地址: http://feed.cnblogs.com/blog/u/147990/rss

LeetCode:Triangle

题目链接

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

分析:从最小面一层开始往上计算,设dp[i][j]是以第i层j个元素为起点的最小路径和,动态规划方程如下

dp[i][j] = value[i][j] + max{dp[i-1][j], dp[i-1][j+1]}

因为每一层之和它下一层的值有关,因此只需要一个一位数组保存下层的值,代码如下:                                                     本文地址

 1 class Solution {
 2 public:
 3     int minimumTotal(vector<vector<int> > &triangle) {
 4         // IMPORTANT: Please reset any member data you declared, as
 5         // the same Solution instance will be reused for each test case.
 6         const int rows = triangle.size();
 7         int dp[rows];
 8         for(int i = 0; i < rows; i++)
 9             dp[i] = triangle[rows-1][i];
10         for(int i = rows-2; i >= 0; i--)
11             for(int j = 0; j <= i; j++)
12                 dp[j] = triangle[i][j] + min(dp[j], dp[j+1]);
13         return dp[0];
14     }
15 };

【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3436532.html

posted @ 2013-11-21 22:37  tenos  阅读(1752)  评论(0编辑  收藏  举报

本博客rss订阅地址: http://feed.cnblogs.com/blog/u/147990/rss

公益页面-寻找遗失儿童