【原创】StreamInsight查询系列(七)——基本查询操作之基础排序

上篇博文介绍了StreamInsight基础查询操作中的分组聚合部分。这篇文章将主要介绍如何StreamInsight查询中的基础排序(TopK)。

测试数据准备

为了方便测试查询,我们首先准备一个静态的测试数据源:

var weatherData = new[]
{
    new { Timestamp = new DateTime(2010, 1, 1, 0, 00, 00, DateTimeKind.Utc), Temperature = -9.0, StationCode = 71395, WindSpeed = 4}, 
    new { Timestamp = new DateTime(2010, 1, 1, 0, 30, 00, DateTimeKind.Utc), Temperature = -4.5, StationCode = 71801, WindSpeed = 41},
    new { Timestamp = new DateTime(2010, 1, 1, 1, 00, 00, DateTimeKind.Utc), Temperature = -8.8, StationCode = 71395, WindSpeed = 6}, 
    new { Timestamp = new DateTime(2010, 1, 1, 1, 30, 00, DateTimeKind.Utc), Temperature = -4.4, StationCode = 71801, WindSpeed = 39},
    new { Timestamp = new DateTime(2010, 1, 1, 2, 00, 00, DateTimeKind.Utc), Temperature = -9.7, StationCode = 71395, WindSpeed = 9}, 
    new { Timestamp = new DateTime(2010, 1, 1, 2, 30, 00, DateTimeKind.Utc), Temperature = -4.6, StationCode = 71801, WindSpeed = 59},
    new { Timestamp = new DateTime(2010, 1, 1, 3, 00, 00, DateTimeKind.Utc), Temperature = -9.6, StationCode = 71395, WindSpeed = 9},
};

weatherData代表了一系列的天气信息(时间戳、温度、气象站编码以及风速)。

接下去将weatherData转变为点类型复杂事件流:

var weatherStream = weatherData.ToPointStream(Application,
    t => PointEvent.CreateInsert(t.Timestamp, t),
    AdvanceTimeSettings.IncreasingStartTime);

基础排序

问题1:怎样找出每4个小时内的最大值事件?

放在上面的例子中,我们可以把问题转变为“怎样找出每4个小时内平均温度最高的事件?”。要解决这个问题,要用到一个复合查询,首先使用翻转窗口TumblingWindow固定4小时,而后在这个4小时内的时间窗口内按照温度进行排序(orderby)。代码如下:

var topKQuery = (from win in weatherStream
                     .TumblingWindow(TimeSpan.FromHours(4),
                     HoppingWindowOutputPolicy.ClipToWindowEnd)
                 from e in win
                 orderby e.Temperature descending
                 select e).Take(1);

LINQPad中的结果如下:

问题2:怎样每隔2小时的计算过去4小时的两个最小值事件?

与问题1较为类似,这里是group..by子句与跳跃窗口HoppingWindow之间的组合。

var topKQuery2 = (from win in weatherStream
                      .HoppingWindow(TimeSpan.FromHours(4),
                      TimeSpan.FromHours(2), HoppingWindowOutputPolicy.ClipToWindowEnd)
                  from e in win
                  orderby e.Temperature ascending
                  select e).Take(2);

LINQPad输出结果如下:

 

下一篇将介绍StreamInsight基础查询操作中的分组排序(TopK)部分。

posted @ 2011-08-23 10:08  StreamInsight  阅读(395)  评论(0编辑  收藏  举报