51Nod.1237.最大公约数之和 V3(莫比乌斯反演 杜教筛 欧拉函数)
\(Description\)
\(n\leq 10^{10}\),求
\[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\ mod\ (1e9+7)
\]
\(Solution\)
首先
\[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)=\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)=d]
\]
注意不是\(\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)=\sum_{d=1}^n\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)=d]\)!
\[ \begin{aligned}
\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)&=\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)=d]\\
&=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}[gcd(i,j)=1]\\
&=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\mu(i)\lfloor\frac{\lfloor\frac{n}{d}\rfloor}{i}\rfloor\lfloor\frac{\lfloor\frac{n}{d}\rfloor}{i}\rfloor\\
&=\sum_{d=1}^nd\sum_{d|t,t\leq n}\mu(\frac{t}{d})(\lfloor\frac{n}{t}\rfloor)^2\\
&=\sum_{t=1}^n(\lfloor\frac{n}{t}\rfloor)^2\sum_{d|t}d\mu(\frac{t}{d})\\
&=\sum_{t=1}^n(\lfloor\frac{n}{t}\rfloor)^2\varphi(t)
\end{aligned}
\]
然后就可以杜教筛了。
最后一步用到$$\sum_{d|n}\frac{n}{d}\mu(d)=\varphi(n)$$
证明:
首先有 \(\sum_{d|n}\varphi(d)=n\)(不证了).
设 \(f(n)=n\),则\(f(n)=\sum_{d|n}\varphi(d)\).
那么 \(\varphi(n)=\sum_{d|n}f(\frac{n}{d})\mu(d)\)
即 \(\sum_{d|n}\frac{n}{d}\mu(d)=\varphi(n)\).
//前缀和不要忘取模。。
#include<cstdio>
#include<cstring>
typedef long long LL;
const int N=4500000,mod=1e9+7;
int P[N>>2],cnt,phi[N+3];
LL n,sum[N+3],sum2[100000];
bool Not_P[N+3];
void Init()
{
phi[1]=1;
for(int i=2;i<=N;++i)
{
if(!Not_P[i]) P[++cnt]=i,phi[i]=i-1;
for(int j=1;j<=cnt&&i*P[j]<=N;++j)
{
Not_P[i*P[j]]=1;
if(i%P[j]) phi[i*P[j]]=phi[i]*(P[j]-1);
else {phi[i*P[j]]=phi[i]*P[j]; break;}
}
}
for(int i=1;i<=N;++i) sum[i]=sum[i-1]+phi[i], sum[i]>=mod?sum[i]-=mod:0;
}
LL FP(LL x,LL k)
{
LL t=1;
for(;k;k>>=1,x=x*x%mod)
if(k&1) t=t*x%mod;
return t;
}
const LL inv2=FP(2,mod-2);
LL Calc(LL x)
{
if(x<=N) return sum[x];
else if(~sum2[n/x]) return sum2[n/x];
LL t=x%mod, res=t*(t+1)%mod*inv2%mod;
for(LL i=2,las;i<=x;i=las+1)
las=x/(x/i),(res-=(las-i+1)*Calc(x/i)%mod)%=mod;
return sum2[n/x]=(res+mod)%mod;
}
int main()
{
Init();//scanf("%I64d",&n);
scanf("%lld",&n);
memset(sum2,0xff,sizeof sum2);
LL res=0;
for(LL i=1,las,t;i<=n;i=las+1)
las=n/(n/i), t=n/i%mod, (res+=t*t%mod*(Calc(las)-Calc(i-1)+mod)%mod)%=mod;
printf("%lld",res);
return 0;
}//9800581876
------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------