BZOJ 3876 有上下界的网络流
思路:
套用有上下界的网络流 就好了 (这算是裸题吧)
比如 有条 x->y 的边 流量上限为R 下限为L
那么du[x]-=L,du[y]+=L
流量上限变成R-L
du[x]>0 SS->x 流量为du[x]
否则 x->TT 流量为-du[x]
//By SiriusRen #include <queue> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define mem(x,y) memset(x,y,sizeof(x)) const int N=666,M=666666,inf=0x3f3f3f3f; int n,xx,yy,op; int first[N],next[M],v[M],edge[M],cost[M],tot; int vis[N],with[N],minn[N],d[N],ans; void Add(int x,int y,int C,int E){edge[tot]=E,cost[tot]=C,v[tot]=y,next[tot]=first[x],first[x]=tot++;} void add(int x,int y,int C,int E){Add(x,y,C,E),Add(y,x,-C,0);} bool tell(){ mem(vis,0),mem(with,0),mem(minn,0x3f),mem(d,0x3f); queue<int>q;q.push(0),d[0]=0; while(!q.empty()){ int t=q.front();q.pop(),vis[t]=0; for(int i=first[t];~i;i=next[i]) if(d[v[i]]>d[t]+cost[i]&&edge[i]){ minn[v[i]]=min(minn[t],edge[i]),with[v[i]]=i,d[v[i]]=d[t]+cost[i]; if(!vis[v[i]])vis[v[i]]=1,q.push(v[i]); } }return d[n+1]!=0x3f3f3f3f; } int zeng(){ for(int i=n+1;i;i=v[with[i]^1]) edge[with[i]]-=minn[n+1],edge[with[i]^1]+=minn[n+1]; return minn[n+1]*d[n+1]; } int main(){ memset(first,-1,sizeof(first)); scanf("%d",&n); for(int i=1;i<=n;i++){ scanf("%d",&op); add(i,1,0,inf),add(i,n+1,0,op); while(op--)scanf("%d%d",&xx,&yy),add(i,xx,yy,inf),add(0,xx,yy,1); } while(tell())ans+=zeng(); printf("%d\n",ans); }