橱窗布置(flower)解题报告

---恢复内容开始---

题目描述

假设以最美观的方式布置花店的橱窗,有F束花,每束花的品种都不一样,同时,至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定的,并从左到右,从1到V顺序编号,V是花瓶的数目,编号为1的花瓶在最左边,编号为V的花瓶在最右边,花束可以移动,并且每束花用1到F的整数惟一标识,标识花束的整数决定了花束在花瓶中列的顺序即如果i<j,则花束i必须放在花束j左边的花瓶中。

例如,假设杜鹃花的标识数为1,秋海棠的标识数为2,康乃馨的标识数为3,所有的花束在放人花瓶时必须保持其标识数的顺序,即:杜鹃花必须放在秋海棠左边的花瓶中,秋海棠必须放在康乃馨左边的花瓶中。如果花瓶的数目大于花束的数目,则多余的花瓶必须空,即每个花瓶中只能放一束花。

每一个花瓶的形状和颜色也不相同,因此,当各个花瓶中放人不同的花束时会产生不同的美学效果,并以美学值(一个整数)来表示,空置花瓶的美学值为0。在上述例子中,花瓶与花束的不同搭配所具有的美学值,可以用如下表格表示。

根据表格,杜鹃花放在花瓶2中,会显得非常好看,但若放在花瓶4中则显得很难看。

为取得最佳美学效果,必须在保持花束顺序的前提下,使花的摆放取得最大的美学值,如果具有最大美学值的摆放方式不止一种,则输出任何一种方案即可。题中数据满足下面条件:1≤F≤100,F≤V≤100,−50≤Aij≤50,其中Aij是花束i摆放在花瓶j中的美学值。输入整数F,V和矩阵(Aij),输出最大美学值和每束花摆放在各个花瓶中的花瓶编号。

 

  花瓶1 花瓶2 花瓶3 花瓶4 花瓶5
杜鹃花 7 23 -5 -24 16
秋海棠 5 21 -4 10 23
康乃馨 -21 5 -4 -20 20

假设条件:

1≤F≤100,其中 F为花束的数量,花束编号从 1至 F 。

F≤V≤100,其中 V 是花瓶的数量。

−50≤Aij≤50,其中 Aij是花束 i在花瓶 j中的美学值。

输入

第一行包含两个数:F,V。

随后的F行中,每行包含V个整数,Aij即为输入文件中第(i+1)行中的第j个数。

输出

第一行是程序所产生摆放方式的美学值。

第二行必须用F个数表示摆放方式,即该行的第K个数表示花束K所在的花瓶的编号。

样例输入

3 5 
7 23 –5 –24 16
5 21 -4 10 23
-21 5 -4 -20 20

样例输出

53 
2 4 5


这道题的题目真的好长啊qaq
看得我头脑发昏
但是仔细提取可用信息其实就是给你一些花和一些花瓶,然后编号靠前的花的花瓶编号要也要小于编号靠后的花瓶,并且每一束花只能放一个花瓶。每种鲜花在不同花瓶有不同的美学值。在满足前面的限制条件下,求美学值最大是多少,并输出美学值最大时的花的放法。
#include<bits/stdc++.h>
using namespace std;
const int maxn=100+3;
inline int read(){
   int s=0,w=1;
   char ch=getchar();
   while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
   while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
   return s*w;
}
int f,v,a[maxn][maxn],dp[maxn][maxn],wz[maxn][maxn],sc[maxn];
int main(){
    f=read();
    v=read();
    memset(dp,-1,sizeof(dp));
    for(int i=1;i<=f;i++)
        for(int j=1;j<=v;j++)
            a[i][j]=read();
    for(int i=1;i<=v-f+1;i++)//第一束花在1~v-f+1的花瓶的美值,
        dp[1][i]=a[1][i];
    for(int i=2;i<=f;i++)
        for(int j=i;j<=v-f+i;j++)//第i束花最少也要放在第i个花瓶
            for(int k=i-1;k<=j-1;k++)//前一个状态的抉择,(第i-1束花能放的花瓶
                if(dp[i][j]<dp[i-1][k]+a[i][j])
                {
                    dp[i][j]=dp[i-1][k]+a[i][j];
                    wz[i][j]=k;//记录最优解花的位置 
                }
    int ans=-1,qaq;
    for(int i=f;i<=v;i++){
        if(dp[f][i]>ans)
        {
            ans=dp[f][i];
            qaq=i;//标记最后一束花的位置 
        }    
    }
    cout<<ans<<endl;
    for(int i=1;i<=f;i++)//倒序保存花的放置位置 
    {
        sc[i]=qaq;
        qaq=wz[f-i+1][qaq];//下一束花的位置 
    }
    for(int i=f;i;i--)//数组倒序输出,花位置顺序输出 
        cout<<sc[i]<<" ";
    return 0;
}

DP好难qaq!!!!!!

其实这道题的转移方程是很简单的关键是确定状态。信息就是题目中的两个限定条件,

(深切体会到Claris大佬说的DP最关键的是确定状态qaq)

posted @ 2019-01-28 21:21  Shayndel  阅读(265)  评论(0编辑  收藏  举报