POJ 1284 Primitive Roots, 完全剩余系,欧拉函数
p是奇素数,如果{xi%p | 1 <= i <= p - 1} = {1,2,...,p-1},则称x是p的原根.
给出一个p,问它的原根有多少个.
{xi%p | 1 <= i <= p - 1} = {1,2,...,p-1} 等价于 {xi%(p-1) | 1 <= i <= p - 1} = {0,1,2,...,p-2},即为(p-1)的完全剩余系
若x,x2...x(p-1)是(p-1)的完全剩余系,
根据定理,可以推出若gcd(x, p-1) = 1时, (1,x,...,x(p-2))也是(p-1)的完全剩余系
因为若xi != xj (mod p-1),那么x*xi != x*xj (mod p-1),与条件m矛盾,所以 xi = xj (mod p-1),
由此可以确定答案为EulerPhi(p-1)
有误之处请指出..