简单几何(求凸包点数) POJ 1228 Grandpa's Estate
题意:判断一些点的凸包能否唯一确定
分析:如果凸包边上没有其他点,那么边想象成橡皮筋,可以往外拖动,这不是唯一确定的。还有求凸包的点数<=2的情况一定不能确定。
/************************************************ * Author :Running_Time * Created Time :2015/11/4 星期三 10:24:45 * File Name :POJ_1228.cpp ************************************************/ #include <cstdio> #include <algorithm> #include <iostream> #include <sstream> #include <cstring> #include <cmath> #include <string> #include <vector> #include <queue> #include <deque> #include <stack> #include <list> #include <map> #include <set> #include <bitset> #include <cstdlib> #include <ctime> using namespace std; #define lson l, mid, rt << 1 #define rson mid + 1, r, rt << 1 | 1 typedef long long ll; const int N = 1e5 + 10; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; const double EPS = 1e-10; const double PI = acos (-1.0); int dcmp(double x) { if (fabs (x) < EPS) return 0; else return x < 0 ? -1 : 1; } struct Point { double x, y; Point () {} Point (double x, double y) : x (x), y (y) {} Point operator - (const Point &r) const { return Point (x - r.x, y - r.y); } bool operator < (const Point &r) const { return x < r.x || (x == r.x && y < r.y); } bool operator == (const Point &r) const { return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0; } }; typedef Point Vector; Point read_point(void) { double x, y; scanf ("%lf%lf", &x, &y); return Point (x, y); } double dot(Point a, Point b) { return a.x * b.x + a.y * b.y; } double cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; } bool on_seg(Point p, Point a, Point b) { return dcmp (cross (a - p, b - p)) == 0 && dcmp (dot (a - p, b - p)) < 0; } /* 凸包边上无点:<= 凸包边上有点:< */ vector<Point> convex_hull(vector<Point> ps) { sort (ps.begin (), ps.end ()); int n = ps.size (), k = 0; vector<Point> qs (n * 2); for (int i=0; i<n; ++i) { while (k > 1 && cross (qs[k-1] - qs[k-2], ps[i] - qs[k-1]) <= 0) k--; qs[k++] = ps[i]; } for (int t=k, i=n-2; i>=0; --i) { while (k > t && cross (qs[k-1] - qs[k-2], ps[i] - qs[k-1]) <= 0) k--; qs[k++] = ps[i]; } qs.resize (k - 1); return qs; } int main(void) { int T; scanf ("%d", &T); while (T--) { int n; scanf ("%d", &n); vector<Point> ps; for (int i=0; i<n; ++i) ps.push_back (read_point ()); if (n == 1) { puts ("NO"); continue; } vector<Point> qs = convex_hull (ps); if (qs.size () == n || qs.size () <= 2) { puts ("NO"); continue; } qs.push_back (qs[0]); int m = qs.size (); bool flag = false; for (int i=0; i<m-1; ++i) { flag = false; for (int j=0; j<ps.size (); ++j) { if (ps[j] == qs[i] || ps[j] == qs[i+1]) continue; if (on_seg (ps[j], qs[i], qs[i+1])) { flag = true; break; } } if (!flag) break; } if (flag) puts ("YES"); else puts ("NO"); } //cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n"; return 0; }
编译人生,运行世界!