stack(数组模拟) POJ 2559 Largest Rectangle in a Histogram
1 /*
2 题意:宽度为1,高度不等,求最大矩形面积
3 stack(数组模拟):对于每个a[i]有L[i],R[i]坐标位置 表示a[L[i]] < a[i] < a[R[i]] 的极限情况
4 st[]里是严格单调递增,若不记录的话还要O(n)的去查找L,R,用栈的话降低复杂度
5 */
6 #include <cstdio>
7 #include <cstring>
8 #include <algorithm>
9 #include <stack>
10 #include <iostream>
11 using namespace std;
12
13 typedef long long ll;
14
15 const int MAXN = 1e5 + 10;
16 const int INF = 0x3f3f3f3f;
17 int a[MAXN], L[MAXN], R[MAXN];
18 int st[MAXN];
19
20 int main(void) //POJ 2559 Largest Rectangle in a Histogram
21 {
22 // freopen ("POJ_2559.in", "r", stdin);
23
24 int n;
25 while (scanf ("%d", &n) == 1)
26 {
27 if (n == 0) break;
28 for (int i=1; i<=n; ++i) scanf ("%d", &a[i]);
29 memset (st, 0, sizeof (st));
30
31 int p = 0;
32 for (int i=1; i<=n; ++i)
33 {
34 while (p >= 1 && a[st[p-1]] >= a[i]) p--;
35 L[i] = (p == 0) ? 0 : st[p-1];
36 st[p++] = i;
37 }
38
39 p = 0;
40 for (int i=n; i>=1; --i)
41 {
42 while (p >= 1 && a[st[p-1]] >= a[i]) p--;
43 R[i] = (p == 0) ? n + 1 : st[p-1];
44 st[p++] = i;
45 }
46
47 ll ans = 0;
48 for (int i=1; i<=n; ++i)
49 {
50 ans = max (ans, (ll) a[i] * (R[i] - L[i] - 1));
51 }
52 printf ("%I64d\n", ans);
53 }
54
55 return 0;
56 }
编译人生,运行世界!