【DLX重复覆盖】HDU 2295 Radar
题意:一个国家有n个城市,有m个地方可以建造雷达,最多可以建K个雷达(K>=1 && K<=m),问雷达最短的探测半径,才能使n个城市都能探测到。
思路:比较裸一点的dl,二分答案,然后算出当前状况下 重复覆盖所需的雷达的个数,判断能否满足条件。
#include <cstdio> #include <cmath> #include <cstring> #include <algorithm> using namespace std; const double eps = 1e-8; const int MAX_U = 3007; const int MAX_N = 57; const int MAX_M = 57; int K; struct DLX { int n, m, size; int U[MAX_U], D[MAX_U], R[MAX_U], L[MAX_U], Row[MAX_U], Col[MAX_U]; int H[MAX_N], S[MAX_M]; int ansd; void init(int _n, int _m) { n = _n; m = _m; for (int i = 0; i <= m; ++i) { S[i] = 0; U[i] = D[i] = i; L[i] = i - 1; R[i] = i + 1; } R[m] = 0; L[0] = m; size = m; for (int i = 1; i <= n; ++i) H[i] = -1; } void Link(int r, int c) { ++S[Col[++size] = c]; Row[size] = r; D[size] = D[c]; U[D[c]] = size; U[size] = c; D[c] = size; if (H[r] < 0) H[r] = L[size] = R[size] = size; else { R[size] = R[H[r]]; L[R[H[r]]] = size; L[size] = H[r]; R[H[r]] = size; } } void remove(int c) { for (int i = D[c]; i != c; i = D[i]) L[R[i]] = L[i], R[L[i]] = R[i]; } void resume(int c) { for (int i = U[c]; i != c; i = U[i]) L[R[i]] = R[L[i]] = i; } bool vis[MAX_M]; int f() { int ret = 0; for (int c = R[0]; c != 0; c = R[c]) vis[c] = true; for (int c = R[0]; c != 0; c = R[c]) if(vis[c]) { ret++; vis[c] = false; for (int i = D[c]; i != c; i = D[i]) for(int j = R[i]; j != i; j = R[j]) vis[Col[j]] = false; } return ret; } bool dfs(int d) { if(d + f() > K) return false; if(R[0] == 0) { return d <= K; } int c = R[0]; for (int i = R[0]; i != 0; i = R[i]) if(S[i] < S[c]) c = i; for (int i = D[c]; i != c; i = D[i]) { remove(i); for (int j = R[i]; j != i; j = R[j]) remove(j); if (dfs(d + 1)) return true; for (int j = L[i]; j != i; j = L[j]) resume(j); resume(i); } return false; } } dlx; struct Point { int x, y; Point() { } Point(int _x, int _y) { x = _x; y = _y; } void in() { scanf("%d%d", &x, &y); } }; int n, m; Point city[MAX_N], le[MAX_N]; int sqr(int x) { return x * x; } double dist(Point a, Point b) { return sqrt((double)sqr((a.x - b.x)) + (double)sqr((a.y - b.y))); } int main() { int T; scanf("%d", &T); while (T-- > 0) { scanf("%d%d%d", &n, &m, &K); for (int i = 0; i < n; ++i) city[i].in(); for (int i = 0; i < m; ++i) le[i].in(); double l = 0, r = 1e8; while (l + eps < r) { double mid = (l + r) / 2; dlx.init(m, n); for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) if(dist(le[i], city[j]) < mid) dlx.Link(i + 1, j + 1); if(dlx.dfs(0)) r = mid; else l = mid; } printf("%.6lf\n",l); } return 0; }