Loading

HDU 6155 Subsequence Count(矩阵乘法+线段树+DP)

题意

给定一个长度为 \(n\)\(01\) 串,完成 \(m\) 种操作——操作分两种翻转 \([l,r]\) 区间中的元素、求区间 \([l,r]\) 有多少个不同的子序列。

\(1 \leq n,m \leq 10^5\)

思路

看到这种题目,应该条件反射的去想一下线段树。

但首先还是从一个询问开始,对于一个长度为 \(n\) 的串,设 \(dp_{i,j}\) 为前 \(i\) 位组成的序列中,以 \(j\) 结尾的串的个数,若串的第 \(i\) 位为 \(j\) 有递推式:

\(dp_{i,j}=dp_{i-1,0}+dp_{i-1,1}+1\)

\(dp_{i,!j}=dp_{i-1,!j}\)

上式是以 \(0j,1j\) 结尾的串的个数,加上单独一个\(j\) ;下式则直接转移上一位的信息。

那么将 \(\{dp_{0,0},dp_{0,1},1\}\) 作为初始矩阵,用线段树维护区间对应的转移矩阵即可。

代码

#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long LL;
using namespace std;
const int N=1e5+5;
const int P=1e9+7;
struct Matrix
{
	int n,m,a[4][4];
	int *operator [](const int x){return a[x];}
	void resize(int _n,int _m){n=_n,m=_m;}
	Matrix operator *(const Matrix &_)const
	{
		Matrix res;res.resize(n,_.m);
		FOR(i,1,n)FOR(j,1,_.m)
		{
			res[i][j]=0;
			FOR(k,1,m)(res[i][j]+=1ll*a[i][k]*_.a[k][j]%P)%=P;
		}
		return res;
	}
	void flip()
	{
		swap(a[1][1],a[2][2]);
		swap(a[1][2],a[2][1]);
		swap(a[3][1],a[3][2]);
	}
	Matrix operator *=(const Matrix &_){return (*this)=(*this)*_;}
};
const Matrix Zero=(Matrix){
	3,3,
	0,0,0,0,
	0,1,0,0,
	0,1,1,0,
	0,1,0,1};
const Matrix One =(Matrix){
	3,3,
	0,0,0,0,
	0,1,1,0,
	0,0,1,0,
	0,0,1,1};
Matrix nd[N<<2],A;
int tag[N<<2];
char str[N];

void build(int k,int l,int r)
{
	tag[k]=0;
	if(l==r)
	{
		if(str[l]=='0')nd[k]=Zero;
		else nd[k]=One;
		return;
	}
	int mid=(l+r)>>1;
	build(k<<1,l,mid);
	build(k<<1|1,mid+1,r);
	nd[k]=nd[k<<1]*nd[k<<1|1];
}
void push_down(int k)
{
	if(!tag[k])return;
	tag[k<<1]^=1,nd[k<<1].flip();
	tag[k<<1|1]^=1,nd[k<<1|1].flip();
	tag[k]=0;
}
void update(int k,int L,int R,int l,int r)
{
	if(L<=l&&r<=R)
	{
		tag[k]^=1,nd[k].flip();
		return;
	}
	push_down(k);
	int mid=(l+r)>>1;
	if(L<=mid)update(k<<1,L,R,l,mid);
	if(R>mid)update(k<<1|1,L,R,mid+1,r);
	nd[k]=nd[k<<1]*nd[k<<1|1];
}
Matrix query(int k,int L,int R,int l,int r)
{
	if(L<=l&&r<=R)return nd[k];
	push_down(k);
	int mid=(l+r)>>1;
	if(R<=mid)return query(k<<1,L,R,l,mid);
	else if(L>mid)return query(k<<1|1,L,R,mid+1,r);
	else return query(k<<1,L,R,l,mid)*query(k<<1|1,L,R,mid+1,r);
}

int main()
{
	A.resize(1,3);
	A[1][1]=0,A[1][2]=0,A[1][3]=1;
	int T,n,Q;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d",&n,&Q);
		scanf("%s",str+1);
		build(1,1,n);
		int op,x,y;
		while(Q--)
		{
			scanf("%d%d%d",&op,&x,&y);
			if(op==1)update(1,x,y,1,n);
			else
			{
				Matrix res=A*query(1,x,y,1,n);
				printf("%d\n",(res[1][1]+res[1][2])%P);
			}
		}
	}
	return 0;
}
posted @ 2018-12-28 10:35  Paulliant  阅读(224)  评论(0编辑  收藏  举报