USACO 2008 Watering hole Prim

题目

题目描述

Farmer John has decided to bring water to his N (1 <= N <= 300) pastures which are conveniently numbered 1..N. He may bring water to a pasture either by building a well in that pasture or connecting the pasture via a pipe to another pasture which already has water.

Digging a well in pasture i costs W_i (1 <= W_i <= 100,000).

Connecting pastures i and j with a pipe costs P_ij (1 <= P_ij <= 100,000; P_ij = P_ji; P_ii=0).

Determine the minimum amount Farmer John will have to pay to water all of his pastures.

POINTS: 400

农民John 决定将水引入到他的n(1<=n<=300)个牧场。他准备通过挖若

干井,并在各块田中修筑水道来连通各块田地以供水。在第i 号田中挖一口井需要花费W_i(1<=W_i<=100,000)元。连接i 号田与j 号田需要P_ij (1 <= P_ij <= 100,000 , P_ji=P_ij)元。

请求出农民John 需要为连通整个牧场的每一块田地所需要的钱数。

输入输出格式

输入格式:

第1 行为一个整数n。

第2 到n+1 行每行一个整数,从上到下分别为W_1 到W_n。

第n+2 到2n+1 行为一个矩阵,表示需要的经费(P_ij)。

输出格式:

只有一行,为一个整数,表示所需要的钱数。

输入输出样例

输入样例#1:
4
5
4
4
3
0 2 2 2
2 0 3 3
2 3 0 4
2 3 4 0
输出样例#1:
9 

分析

要将图中的所有点连接起来,求最小的花费,这是一道典型的最小生成树。但是这道最小生成树的最大难点在于本题多了一个“井”的问题。同时挖井也有一定的花费。如何处理这个井就是我们接下来要考虑的问题。

其实我们有一个非常“投机取巧”的方法。我们把Farmer John牌地下天然矿泉水源也考虑作一个点。这个地下水源到其他点路径的权值就是挖井的费用。然后就是一个没有什么特殊操作的裸Prim了!

(最喜欢这种在模板上稍加改动的题目了)

程序

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 const int MAXN = 300 + 1, INF = 0x3F3F3F3F;
 4 int n, w, p, EdgeCount=  0, Head[MAXN];
 5 struct edge
 6 {
 7     int Next, Aim, Weight;
 8 }Edge[MAXN*MAXN];
 9 void insert(int u, int v, int w)
10 {
11     Edge[++EdgeCount] = (edge){Head[u], v, w};
12     Head[u] = EdgeCount;
13 }
14 int Prim()
15 {
16     bool vis[MAXN];
17     int MinLen, Count = 1, ans = 0, visited[MAXN];
18     visited[Count] = 0;
19     vis[0] = 1;
20     for (int i = 1; i <= n; i++)
21     {
22         MinLen = INF;
23         for (int j = 1; j <= Count; j++)
24             for (int k = Head[visited[j]]; k; k = Edge[k].Next)
25                 if (!vis[Edge[k].Aim] && Edge[k].Weight < MinLen)
26                 {
27                     MinLen = Edge[k].Weight;
28                     p = Edge[k].Aim;
29                 }
30         vis[p] = 1;
31         ans += MinLen;
32         Count++;
33         visited[Count] = p;
34     }
35     return ans;
36 }
37 int main()
38 {
39     //freopen("testdata.in","r",stdin);
40     //freopen("data.out","w",stdout);
41     memset(Head,0,sizeof(Head));
42     cin >> n;
43     for (int i = 1; i <= n; i++)
44     {
45         cin >> w;
46         insert(0,i,w);
47         insert(i,0,w);
48     }
49     for (int i = 1; i <= n ; i++)
50         for (int j = 1; j <= n; j++)
51         {
52             cin >> p;
53             if (i != j)
54                 insert(i,j,p);
55         }
56     cout << Prim() << endl;
57     return 0;
58 }

 

posted @ 2018-02-07 11:16  OptimusPrime_L  阅读(304)  评论(0编辑  收藏  举报