TCP协议与UDP协议
TCP(Transmission Control Protocol) 传输控制协议
1. 三次握手协议(建立连接)
TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接:
位码即tcp标志位,有6种标示:SYN(synchronous建立联机) ACK(acknowledgement 确认) PSH(push传送) FIN(finish结束) RST(reset重置) URG(urgent紧急)
Sequence number(顺序号码) Acknowledge number(确认号码)
第一次握手:主机A发送位码为syn=1,随机产生seq number=1234567的数据包到服务器,主机B由SYN=1知道,A要求建立联机;
第二次握手:主机B收到请求后要确认联机信息,向A发送ack number=(主机A的seq+1),syn=1,ack=1,随机产生seq=7654321的包
第三次握手:主机A收到后检查ack number是否正确,即第一次发送的seq number+1,以及位码ack是否为1,若正确,主机A会再发送ack number=(主机B的seq+1),ack=1,主机B收到后确认seq值与ack=1则连接建立成功。
完成三次握手,主机A与主机B开始传送数据。
2、四次挥手(释放连接)
第一次挥手:主动关闭方发送一个FIN,用来关闭主动方到被动关闭方的数据传送,也就是主动关闭方告诉被动关闭方:我已经不会再给你发数据了(当然,在fin包之前发送出去的数据,如果没有收到对应的ack确认报文,主动关闭方依然会重发这些数据),但此时主动关闭方还可以接受数据。
第二次挥手:被动关闭方收到FIN包后,发送一个ACK给对方,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号)。
第三次挥手:被动关闭方发送一个FIN,用来关闭被动关闭方到主动关闭方的数据传送,也就是告诉主动关闭方,我的数据也发送完了,不会再给你发数据了。
第四次挥手:主动关闭方收到FIN后,发送一个ACK给被动关闭方,确认序号为收到序号+1,至此,完成四次挥手。
特点:
a) 面向连接: 是指发送数据之前必须在两端建立连接。建立连接的方法是“三次握手”,这样能建立可靠的连接。建立连接,是为数据的可靠传输打下了基础
b) 仅支持单播传输: 每条TCP传输连接只能有两个端点,只能进行点对点的数据传输,不支持多播和广播传输方式。
c) 面向字节流 : TCP不像UDP一样那样一个个报文独立地传输,而是在不保留报文边界的情况下以字节流方式进行传输。
d) 可靠传输 :
对于可靠传输,判断丢包,误码靠的是TCP的段编号以及确认号。TCP为了保证报文传输的可靠,就给每个包一个序号,同时序号也保证了传送到接收端实体的包的按序接收。然后接收端实体对已成功收到的字节发回一个相应的确认(ACK);如果发送端实体在合理的往返时延(RTT)内未收到确认,那么对应的数据(假设丢失了)将会被重传。
e) 提供拥塞控制: 当网络出现拥塞的时候,TCP能够减小向网络注入数据的速率和数量,缓解拥塞
f) TCP提供全双工通信: TCP允许通信双方的应用程序在任何时候都能发送数据,因为TCP连接的两端都设有缓存,用来临时存放双向通信的数据。当然,TCP可以立即发送一个数据段,也可以缓存一段时间以便一次发送更多的数据段(最大的数据段大小取决于MSS)
疑问
1. 为什么是三次握手,而不是两次握手? server端同意建立连接之后为什么不能直接通信,而是再进行一次确认。
其实二次握手理论上也是行的通的,但是会带来一个问题:
a) 假定A向B发送一个连接请求,由于一些原因,导致A发出的连接请求在一个网络节点逗留了比较多的时间。此时A会将此连接请求作为无效处理 又重新向B发起了一次新的连接请求,B正常收到此连接请求后建立了连接,数据传输完成后释放了连接。如果此时A发出的第一次请求又到达了B,B会以为A又发起了一次连接请求,如果是两次握手:此时连接就建立了,B会一直等待A发送数据,从而白白浪费B的资源
。
那为什三次握手就能解决上述问题呢?如果最后一次确认也存在延迟,若干时间之后才到到服务端的,不会同样白白建立连接么?
b) 猜测服务端会进行一个判断,如果SYNC-RCVD状态(即收到客户端建立连接请求到收到确认之间)时间过长,则可以放弃这次连接的建立。
2.第二次挥手和第三次挥手能不能合并?
第二次挥手和第三次挥手中间过程用来传输未传递完的数据。
a) 如果没有待传递数据,其实第二次挥手和第三次挥手是可以合并的
b) 如果有待传递数据则不可以。
3. TCP第四次挥手失败怎么办?
第四次挥手失败,此时客户端的状态为TIME_WAIT,会等待一段时间,服务器端状态仍然为LAST_ACK,超时一段时间仍然没有响应的话,服务器端会再发起一次FIN包,告诉客户端服务器端也要断开连接的请求,客户端收到后会再次发生ACK包确认断开连接。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。
4. TIME_WAIT的时间为什么是2MSL?
MSL: 最大报文生存时间。 如果超过这个时间还没有收到服务端的FIN包,则可以正常关闭。
发送报文到服务端时间 + 服务端发送FIN包到客户端 肯定小于 2MSL
UDP(户数据报协议)
1. 面向无连接
首先 UDP 是不需要和 TCP一样在发送数据前进行三次握手建立连接的,想发数据就可以开始发送了。并且也只是数据报文的搬运工,不会对数据报文进行任何拆分和拼接操作。
具体来说就是:
- 在发送端,应用层将数据传递给传输层的 UDP 协议,UDP 只会给数据增加一个 UDP 头标识下是 UDP 协议,然后就传递给网络层了
- 在接收端,网络层将数据传递给传输层,UDP 只去除 IP 报文头就传递给应用层,不会任何拼接操作
2. 有单播,多播,广播的功能
UDP 不止支持一对一的传输方式,同样支持一对多,多对多,多对一的方式,也就是说 UDP 提供了单播,多播,广播的功能。
3. UDP是面向报文的
发送方的UDP对应用程序交下来的报文,在添加首部后就向下交付IP层。UDP对应用层交下来的报文,既不合并,也不拆分,而是保留这些报文的边界。因此,应用程序必须选择合适大小的报文
4. 不可靠性
首先不可靠性体现在无连接上,通信都不需要建立连接,想发就发,这样的情况肯定不可靠。
并且收到什么数据就传递什么数据,并且也不会备份数据,发送数据也不会关心对方是否已经正确接收到数据了。
再者网络环境时好时坏,但是 UDP 因为没有拥塞控制,一直会以恒定的速度发送数据。即使网络条件不好,也不会对发送速率进行调整。这样实现的弊端就是在网络条件不好的情况下可能会导致丢包,但是优点也很明显,在某些实时性要求高的场景(比如电话会议)就需要使用 UDP 而不是 TCP。
5. 头部开销小,传输数据报文时是很高效的。
UDP 头部包含了以下几个数据:
- 两个十六位的端口号,分别为源端口(可选字段)和目标端口
- 整个数据报文的长度
- 整个数据报文的检验和(IPv4 可选 字段),该字段用于发现头部信息和数据中的错误
因此 UDP 的头部开销小,只有八字节,相比 TCP 的至少二十字节要少得多,在传输数据报文时是很高效的
总结:
1. 对比
UDP | TCP | |
---|---|---|
是否连接 | 无连接 | 面向连接 |
是否可靠 | 不可靠传输,不使用流量控制和拥塞控制 | 可靠传输,使用流量控制和拥塞控制 |
连接对象个数 | 支持一对一,一对多,多对一和多对多交互通信 | 只能是一对一通信 |
传输方式 | 面向报文 | 面向字节流 |
首部开销 | 首部开销小,仅8字节 | 首部最小20字节,最大60字节 |
适用场景 | 适用于实时应用(IP电话、视频会议、直播等) | 适用于要求可靠传输的应用,例如文件传输 |
参考:
http://www.cnblogs.com/rootq/articles/1377355.html
http://www.cnblogs.com/renyuan/p/3431022.html