[USACO 06DEC]Milk Patterns
Description
给定一个长度为 $n$ 的字符串,求至少出现 $k$ 次的最长重复子串,这 $k$ 个子串可以重叠。
$1\leq n\leq 20000$
Solution
预处理好 $height$ 之后,比较显然的是答案就是一段连续 $k$ 个后缀内最小 $height$ 值最大值。用滑动窗口维护就好了。
Code
#include <bits/stdc++.h>
using namespace std;
const int N = 20000+5, M = 1000000+5;
int n, m, k, ch[N], x[N<<1], y[N<<1], c[M], sa[N], rk[N], height[N];
int q[N], head, tail, ans;
void get() {
for (int i = 1; i <= n; i++) c[x[i] = ch[i]]++;
for (int i = 1; i <= m; i++) c[i] += c[i-1];
for (int i = n; i >= 1; i--) sa[c[x[i]]--] = i;
for (int k = 1; k <= n; k <<= 1) {
int num = 0;
for (int i = n-k+1; i <= n; i++) y[++num] = i;
for (int i = 1; i <= n; i++) if (sa[i] > k) y[++num] = sa[i]-k;
for (int i = 0; i <= m; i++) c[i] = 0;
for (int i = 1; i <= n; i++) c[x[i]]++;
for (int i = 1; i <= m; i++) c[i] += c[i-1];
for (int i = n; i >= 1; i--) sa[c[x[y[i]]]--] = y[i];
swap(x, y); x[sa[1]] = num = 1;
for (int i = 2; i <= n; i++)
x[sa[i]] = (y[sa[i]] == y[sa[i-1]] && y[sa[i]+k] == y[sa[i-1]+k]) ? num : ++num;
if ((m = num) == n) break;
}
for (int i = 1; i <= n; i++) rk[sa[i]] = i;
for (int i = 1, k = 0; i <= n; i++) {
if (rk[i] == 1) continue;
if (k) --k; int j = sa[rk[i]-1];
while (i+k <= n && j+k <= n && ch[i+k] == ch[j+k]) ++k;
height[rk[i]] = k;
}
}
void work() {
scanf("%d%d", &n, &k); m = M-5; --k;
for (int i = 1; i <= n; i++) scanf("%d", &ch[i]);
get(); tail = -1;
for (int i = 1; i <= n; i++) {
while (head <= tail && i-q[head] >= k) ++head;
while (head <= tail && height[i] <= height[q[tail]]) --tail;
q[++tail] = i;
if (i >= k) ans = max(ans, height[q[head]]);
}
printf("%d\n", ans);
}
int main() {work(); return 0; }
博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/NaVi-Awson/,否则你会终生找不到妹子!!!