[洛谷U72177]火星人plus

题目大意:给你一个$1\sim n(n\leqslant 10^5)$的排列,设$a$为它在$1\sim n$的全排列中的排名,求在$1\sim n$的全排列中第$a+m$个排列。

题解:康托展开以及逆康托展开。将原排列转为变进制数,加上$m$,再用转回排列。转回去可以用在树状数组上二分来解决。这里使用了$skip2004$教的两种方法。

卡点:变进制数加法时写错

 

C++ Code:

#include <cstdio>
#include <iostream>
#include <algorithm>
const int maxn = 1 << 17;

int n, L = 1, nn;

namespace BIT {
	int V[maxn], res;
	inline void inc(int p) { for (; p <= L; p += p & -p) ++V[p]; }
	inline void dec(int p) { for (; p <= L; p += p & -p) --V[p]; }
	inline int sum(int p) { for (res = 0; p; p &= p - 1) res += V[p]; return res; }
	inline void fill(int p, int L) { for (int i = 0; i < L; ++i) V[i] = p * (i & -i); }
	inline int query(int k) { // 树状数组上二分
		// 区间法
		static int l, r, mid;
		l = 1, r = L;
		while (l != r) {
			mid = l + r >> 1;
			if (V[mid] < k) k -= V[mid], l = mid + 1;
			else r = mid;
		}
		dec(l);
		return l;
		// 跳点法
		static int rt; rt = L;
		for (int i = rt; i >>= 1; ) {
			if (V[rt - i] < k) k -= V[rt - i];
			else rt -= i;
		}
		dec(rt);
		return rt;
	}
}

long long a[maxn], m;
int main() {
	std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
	std::cin >> n >> m;
	while (L < n) L <<= 1;
	for (int i = 1, t; i <= n; ++i) {
		std::cin >> a[i];
		t = BIT::sum(a[i]);
		BIT::inc(a[i]);
		a[i] = a[i] - t - 1;
	}
	a[n] += m;
	for (int i = n; i; --i) {
		a[i - 1] += a[i] / (n - i + 1);
		a[i] %= n - i + 1;
	}
	BIT::fill(1, L + 1);
	for (int i = 1; i <= n; ++i) std::cout << BIT::query(a[i] + 1) << ' ';
	std::cout << '\n';
	return 0;
}

  

posted @ 2019-07-10 16:15  Memory_of_winter  阅读(219)  评论(0编辑  收藏  举报