【bzoj3884】 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 (题目链接)
题意
求
Solution
解决的关键:
当${n>φ(p)}$,有$${a^n≡a^{n\%φ(p)+φ(p)}~(mod~p)}$$
然后递归log(p)次就会出解:http://blog.csdn.net/skywalkert/article/details/43955611
细节
代码
// bzoj3884 #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> #define LL long long #define inf 2147483640 #define Pi acos(-1.0) #define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout); using namespace std; const int maxn=10000010; int phi[maxn],vis[maxn],p[maxn]; void calphi() { phi[1]=1; for (int i=2;i<maxn;i++) { if (!vis[i]) {p[++p[0]]=i;phi[i]=i-1;} for (int j=1;j<=p[0];j++) { if (p[j]*i>maxn) break; vis[p[j]*i]=1; if (i%p[j]==0) {phi[p[j]*i]=phi[i]*p[j];break;} else phi[p[j]*i]=phi[p[j]]*phi[i]; } } } int power(int a,int b,int c) { int res=1; while (b) { if (b&1) res=(LL)res*a%c; b>>=1;a=(LL)a*a%c; } return res; } int solve(int p) { if (p==1) return 0; int res=solve(phi[p])+phi[p]; return power(2,res,p); } int main() { calphi(); int T,P;scanf("%d",&T); while (T--) { scanf("%d",&P); printf("%d\n",solve(P)); } return 0; }
This passage is made by MashiroSky.