python全栈开发-Day11 迭代器、生成器、面向过程编程

一、 迭代器

一 、迭代的概念

  迭代器即迭代的工具,那什么是迭代呢?
  迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代的结果都是下一次迭代的初始值

while True: #只是单纯地重复,因而不是迭代
    print('===>') 
    
l=[1,2,3]
count=0
while count < len(l): #迭代
    print(l[count])
    count+=1

二、 为何要有迭代器?什么是可迭代对象?什么是迭代器对象?

1、为何要有迭代器?

  对于序列类型:字符串、列表、元组,我们可以使用索引的方式迭代取出其包含的元素。
但对于字典、集合、文件等类型是没有索引的,若还想取出其内部包含的元素,则必须找出一种不依赖于索引的迭代方式,这就是迭代器。

迭代器:迭代取值工具

2、什么是可迭代对象?

  可迭代对象指的是内置有__iter__()方法的对象,即obj.__iter__(),如下:

'hello'.__iter__()
(1,2,3).__iter__()
[1,2,3].__iter__()
{'a':1}.__iter__()
{'a','b'}.__iter__()
open('a.txt').__iter__()

3、什么是迭代器对象?

  可迭代对象执行obj.__iter__()得到的结果就是迭代器对象,而迭代器对象指的是即内置有__iter__()又内置有__next__()方法的对象。

文件类型是迭代器对象 open('a.txt').__iter__() open('a.txt').__next__()

#'hello'.__iter__()        
#(1,2,3).__iter__()
#[1,2,3].__iter__()
#{'a':1}.__iter__()
#{'a','b'}.__iter__()
#open('a.txt').__iter__()
open('a.txt').__iter__()
open('a.txt').__next__()   #我们发现只有文件是迭代器对象

4、注意: 迭代器对象一定是可迭代对象,而可迭代对象不一定是迭代器对象

三 、迭代器对象的使用

dic={'a':1,'b':2,'c':3}
iter_dic=dic.__iter__() #得到迭代器对象,迭代器对象即有__iter__()又有__next__(),但是:迭代器.__iter__()得到的仍然是迭代器本身
iter_dic.__iter__() is iter_dic #True

print(iter_dic.__next__()) #等同于next(iter_dic)
print(iter_dic.__next__()) #等同于next(iter_dic)
print(iter_dic.__next__()) #等同于next(iter_dic)
# print(iter_dic.__next__()) #抛出异常StopIteration,或者说结束标志

#有了迭代器,我们就可以不依赖索引迭代取值了
iter_dic=dic.__iter__()
while 1:    #布尔值不是0,空,None  False    别的都是Ture
    try:
        k=next(iter_dic)
        print(dic[k])
    except StopIteration:
        break
        
#这么写太low了,还需要我们自己捕捉异常,控制next,
python这么牛逼,肯定有简洁模式!请看for循环

四 、for循环

#基于for循环,我们可以完全不再依赖索引去取值了
dic={'a':1,'b':2,'c':3}
for line in dic:
    print(dic[line])

# for循环原理分析:
#1、for 循环称之为迭代器循环,in后跟的必须是可迭代的对象
#2、for循环会执行in后对象的__iter__方法,拿到迭代器对象
#3、然后调用迭代器对象的__next__方法,拿到一个返回值赋值给line,执行一次循环体
#4、周而复始,直到取值完毕,for循环会检测到异常自动结束循环

五 、迭代器的优缺点

优点:

  1、 提供一种统一的、不依赖于索引的取值方式

  2、惰性计算,节省内存

缺点:

  1、取值麻烦,只能一个一个取,只能往后走

  2、 一次性的,不能往前退无法获取长度(只有在next完毕才知道到底有几个值)

二 、生成器

一 、什么是生成器

#只要函数内部包含有yield关键字,那么函数名()的到的结果就是生成器,并且不会执行函数内部代码

def func():
    print('====>first')
    yield 1
    print('====>second')
    yield 2
    print('====>third')
    yield 3
    print('====>end')

g=func()
print(g) #<generator object func at 0x0000000002184360> 

二 、生成器就是迭代器

def func():
    print('====>first')
    yield 1
    print('====>second')
    yield 2
    print('====>third')
    yield 3
    print('====>end')

g=func()
g.__iter__
g.__next__       
#上面所讲的同时有__iter__()和__next()方法,就是迭代器
#所以生成器就是迭代器,因此可以这么取值
res=next(g)
print(res)    #一次next()执行一次yield

三、 练习

自定义函数模拟range(1,7,2)

def my_range(start,stop,step=1):
    while start < stop:
        yield start
        start+=step

#执行函数得到生成器,本质就是迭代器
obj=my_range(1,7,2) #1  3  5
print(next(obj))
print(next(obj))
print(next(obj))
print(next(obj)) #StopIteration

#应用于for循环
for i in my_range(1,7,2):
    print(i)

四、 yield总结

  1、为我们提供了一种自定义迭代器的方式,
可以在函数内用yield关键字,调用函数拿到的结果就是一个生成器,生成器就是迭代器
  2、yield可以像return一样用于返回值,区别是return只能返回一次值,而yield可返回多次
因为yield可以保存函数执行的状态

三、面向过程编程

1、首先强调:面向过程编程绝对不是用函数编程这么简单,面向过程是一种编程思路、思想,而编程思路是不依赖于具体的语言或语法的。

言外之意是即使我们不依赖于函数,也可以基于面向过程的思想编写程序。

2、定义: 面向过程的核心是过程二字,过程指的是解决问题的步骤,即先干什么再干什么 基于面向过程设计程序就好比在设计一条流水线,是一种机械式的思维方式 。 

3、优点:复杂的问题流程化,进而简单化。

4、缺点:可扩展性差,修改流水线的任意一个阶段,都会牵一发而动全身。

5、应用:扩展性要求不高的场景,典型案例如linux内核,git,httpd。

6、举例 流水线1: 用户输入用户名、密码--->用户验证--->欢迎界面

 ps:函数的参数传入,是函数吃进去的食物,而函数return的返回值,是函数拉出来的结果。

面向过程的思路就是,把程序的执行当做一串首尾相连的功能,该功能可以是函数的形式,然后一个函数吃,拉出的东西给另外一个函数吃,如此反复。。。

posted @ 2018-03-31 10:15  天王盖地虎宝塔镇河妖  阅读(318)  评论(0编辑  收藏  举报