题目链接:
题目:
A unitary divisor \(d\) of a number \(n\) is a divisor of \(n\) that has the property \(gcd(d, n/d) = 1\).
The unitary divisors of \(4! = 24\) are \(1, 3, 8\) and \(24\).
The sum of their squares is \(1^2 + 3^2 + 8^2 + 24^2 = 650\).
Let \(S(n)\) represent the sum of the squares of the unitary divisors of \(n\). Thus \(S(4!)=650\).
Find \(S(100 000 000!)\) modulo \(1 000 000 009\).
题解:
因为:\(n! = p_1^{a_1}p_2^{a_2}p_3^{a_3} \cdots p_k^{a_k}\)
所以:\(S(n!) = S(p_1^{a_1}p_2^{a_2}p_3^{a_3} \cdots p_k^{a_k}) = S(p_1^{a_1})*S(p_2^{a_2})*\cdots*S(p_k^{a_k})\)
\(=\displaystyle \prod_{i=1}^k (p_i^{2a_i}+1)\)
其实,unitary divisor 就是 \(1, p_1^{a_1}, p_2^{a_2}, p_3^{a_3}, \cdots p_k^{a_k}\)
比如: \((1 + a)(1 + b)(1 + c) = 1 + a + b + c + ab + ac + bc + abc\)
所以,他们的和就是 \(\displaystyle \prod_{i=1}^k (p_i^{a_i}+1)\)。
同理,它们的平方和就是 \(\displaystyle \prod_{i=1}^k (p_i^{2a_i}+1) = \displaystyle \prod_{i=1}^k ((p_i^{a_i})^{2}+1)\)
其中,\(\displaystyle a_i =\sum_{j=1}^{ n } \left\lfloor \frac{n}{p_i^j} \right\rfloor\)
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e8;
const int mod =1e9+9;
ll qpower(ll a,ll b,ll mod)
{
long long ans=1;
while(b>0)
{
if(b&1)
ans=(ans*a)%mod;
b>>=1;
a=(a*a)%mod;
}
return ans;
}
ll solve(ll i,ll n)
{
ll res = 0;
while (n) {
n /= i;
res += n;
}
// std::cout << "res=" << res << '\n';
return res;
}
ll cal(ll a)
{
return (1LL + a * a) % mod;
}
int main(int argc, char const *argv[]) {
ll ans = 1;
std::vector<ll> isprime(1e8+123,1);
isprime[0] = 0;
isprime[1] = 0;
isprime[2] = 1;
for(int i=2;i<maxn;i++) {
if(isprime[i]) {
for(int j= i+i;j<maxn;j+=i) {
isprime[j] = 0;
}
}
}
// std::cout << "init finish" << '\n';
for(ll i=2;i<maxn;i++) {
// if(i%10000000==0)std::cout << "ok" << '\n';
if(isprime[i]) {
ll power = solve(i,maxn);
ans = 1LL * ans * cal( qpower(i,power,mod) ) % mod;
}
}
std::cout << ans << '\n';
cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n";
return 0;
}