在ElasticSearch中使用 IK 中文分词插件

我这里集成好了一个自带IK的版本,下载即用,

https://github.com/xlb378917466/elasticsearch5.2.include_IK

 添加了IK插件意味着你可以使用ik_smart(最粗粒度的拆分)ik_max_word(最细粒度的拆分)两种analyzer

 你也可以从下面这个地址获取最新的IK源码,自己集成,

https://github.com/medcl/elasticsearch-analysis-ik

里面还提供了使用说明,可以很快上手。

一般使用elasticsearch-head测试比较方便。

这个IK分词插件挺好用的,支持自定义分词,更重要的是支持热更新。

比如上面这个应用程序层是被分成了两个词,如果你把应用程序层作为一个词添加到你的自定义词典中,那么结果就会发生微妙的变化,通过这样不断的完善词库,相信搜索的体验会越来越好。

现在IK分词插件也算集成好了,如何使用?

首先新建一个索引,并且给这个索引下的文档类型设置Mapping关系

这里还是继续使用昨天新建的索引twitter作例子,所以只需要给文档类型tweet 新建一个字段Content,并设置这一个字段的Mapping来举例:

http://localhost:9200/twitter/_mapping/tweet/

{
  "properties": {
    "content": {
      "type": "text",
      "store": "no",
      "term_vector": "with_positions_offsets",
      "analyzer": "ik_smart",
      "search_analyzer": "ik_smart",
      "include_in_all": "true",
      "boost": 8
    }
  }
}

 这样一来,后面添加的Content就会使用ik_smart来分词,

添加一条测试数据:

http://localhost:9200/twitter/tweet/1/  选择Put  Method

{
  "content": "应用程序层是一个附加层"
}

 查询测试:

http://localhost:9200/twitter/_search/

使用POST Method,因为我使用ElasticSearch Head 在Get的情况下不返回highlight信息

{
  "query" : { "match" : { "content" : "应用程序层是一个附加层" }},
  "highlight" : {
        "pre_tags" : ["<tag1>", "<tag2>"],
        "post_tags" : ["</tag1>", "</tag2>"],
        "fields" : {
            "content" : {}
        }
    }
}

 返回如下:

 

使用应用程序关键词是搜不到内容的,因为分词器不识别 这个词,就是说你要用被你拆分之后的词来搜索,才有匹配的记录。

 

比如下面几个就是被拆分出来的词

 

 

posted @ 2017-04-04 11:39  麻将我会  阅读(4278)  评论(0编辑  收藏  举报