Colored Sticks (字典树哈希+并查集+欧拉路)
Time Limit: 5000MS | Memory Limit: 128000K | |
Total Submissions: 27704 | Accepted: 7336 |
Description
You are given a bunch of wooden sticks. Each endpoint of each stick is colored with some color. Is it possible to align the sticks in a straight line such that the colors of the endpoints that touch are of the same color?
Input
Input is a sequence of lines, each line contains two words, separated by spaces, giving the colors of the endpoints of one stick. A word is a sequence of lowercase letters no longer than 10 characters. There is no more than 250000 sticks.
Output
If the sticks can be aligned in the desired way, output a single line saying Possible, otherwise output Impossible.
Sample Input
blue red red violet cyan blue blue magenta magenta cyan
Sample Output
Possible
Hint
Huge input,scanf is recommended.
题意:给定若干个棒,棒的两端涂上不同的颜色,问是否能将棒首尾相连且不同棒相接的一端颜色相同;
思路:题意容易理解,但开始完全没思路,经大神指点后,可以用欧拉路的思想;可以把涂颜色的棒的两端看成结点,
把木棒看成边,相同颜色的就是一个结点,要将木棒连成一个直线,也就是“一笔画”问题;
无向图存在欧拉路的充要条件是:
>图是连通的(可以用并查集判断,开始将每个点初始化一棵树,经过输入将有相同祖先的结点合并到一个集合中,
最后任意枚举一个节点,若他们有共同的祖先,说明图是连通的);
>度数为奇数的结点有0个或两个;
1 #include<stdio.h> 2 #include<string.h> 3 #include<stdlib.h> 4 int degree[500010],set[500010],id = 1; 5 6 struct node 7 { 8 int flag; 9 int id; 10 struct node* next[26]; 11 }; 12 struct node* root; 13 14 //开辟新结点 15 struct node* creat() 16 { 17 struct node *p = (struct node*)malloc(sizeof(struct node)); 18 p->flag = 0; 19 for(int i = 0; i < 26; i++) 20 p->next[i] = NULL; 21 return p; 22 } 23 24 int find(int x) 25 { 26 if(set[x] != x) 27 set[x] = find(set[x]);//路径压缩; 28 return set[x]; 29 } 30 31 //字典树哈希 32 int Hash(char s[]) 33 { 34 struct node *p = root; 35 for(int i = 0; s[i]; i++) 36 { 37 if(p->next[s[i]-'a'] == NULL) 38 p->next[s[i]-'a'] = creat(); 39 p = p->next[s[i]-'a']; 40 } 41 if(p->flag != 1) 42 { 43 p->flag = 1; 44 p->id = id++; 45 } 46 return p->id; 47 } 48 49 int check() 50 { 51 int sum = 0; 52 int x = find(1); 53 for(int i = 2; i < id; i++) 54 if(find(i) != x)//没有共同祖先,图是不连通的,直接返回; 55 return 0; 56 for(int i = 1; i < id; i++) 57 { 58 if(degree[i]%2) 59 sum++; 60 } 61 if(sum == 0 || sum == 2) 62 return 1;//图是连通的并且奇度数是0或2,说明有欧拉路; 63 return 0;//图是连通的但奇度数不是0或2也不存在欧拉路; 64 } 65 66 int main() 67 { 68 memset(degree,0,sizeof(degree)); 69 for(int i = 1; i <= 500000; i++) 70 set[i] = i;//所有节点初始化为一棵树 71 char s1[12],s2[12]; 72 int u,v; 73 root = creat(); 74 while(scanf("%s %s",s1,s2) != EOF) 75 { 76 u = Hash(s1); 77 v = Hash(s2); 78 degree[u]++; 79 degree[v]++; 80 int x = find(u); 81 int y = find(v); 82 if(x != y) 83 set[x] = y; 84 } 85 if(check()) printf("Possible\n"); 86 else printf("Impossible\n"); 87 return 0; 88 }