Kaldi的delta特征
Delta特征是将mfcc特征(13维)经过差分得到的
它是做了一阶二阶的差分
提取的mfcc特征是13维的
然后通过delta就变成了39维
一阶差分:
D(P(t))=P(t)-P(t-1)
二阶差分:
D(D(P(t)))=(P(t)-P(t-1))-(P(t-1)-P(t-2))
Delta=Δ=差分
在
voxforge/s5/run.sh:116
rm/s5/run.sh:80
vystadial_cz/s5/run.sh:82
都注释了下一行的训练使用delta+delta-delta特征
在这之前,都运行了
steps/align_si.sh --nj "$train_nj" --cmd "$train_cmd" \
--use-graphs true <data-dir> <lang-dir> <src-dir> <align-dir>
"--use-graphs=true"意思是,使用 <src-dir>中的train graph(在fsts.JOB.gz中)
如果不加上,则默认"use-graphs=false",即用<src-dir>中的tree, final.mdl输入搭配compile-train-graph中生成训练的fst(train graph)
steps/train_deltas.sh是训练一个delta+delta-delta三音素系统(模型)
steps/align_si.sh对delta特征进行apply-cmvn, add-deltas
对lda特征进行apply-cmvn, splice-feats(可选), 用final.mat进行transform-feats
- delta特征与splice特征的区别
2017/5/20 16:23
[chick](616310753) 16:09:17
delte是显式给出差分
splice是在时间上作扩展
包含了差分信息
但是不是显式给出的,在学习中可能学习不到差分知识,可能学习到别的知识
语音研究生求南(287568706) 16:09:58
delta是同一帧复制多次吗?
[chick](616310753) 16:10:11
上一帧-当前帧
语音识别原理介绍_V1.3_1034.pdf
分帧后,语音就变成了很多小段。但波形在时域上几乎没有描述能力,因此必须 将波形作变换。常见的一种变换方法是提取 MFCC 特征,把每一帧波形变成一 个12维向量。这12个点是根据人耳的生理特性提取的,可以理解为这12个点包含 了这帧语音的内容信息。这个过程叫做声学特征提取。实际应用中,这一步有很 多细节,比如差分、均值方差规整、高斯化、降维去冗余等,声学特征也不止有 MFCC 这一种,具体就不详述了。