CodeForces 903D Almost Difference

题目描述

Let's denote a function

You are given an array aa consisting of nn integers. You have to calculate the sum of d(a_{i},a_{j})d(ai,aj) over all pairs (i,j)(i,j) such that 1<=i<=j<=n1<=i<=j<=n .

输入输出格式

输入格式:

 

The first line contains one integer nn ( 1<=n<=2000001<=n<=200000 ) — the number of elements in aa .

The second line contains nn integers a_{1}a1 , a_{2}a2 , ..., a_{n}an ( 1<=a_{i}<=10^{9}1<=ai<=109 ) — elements of the array.

 

输出格式:

 

Print one integer — the sum of d(a_{i},a_{j})d(ai,aj) over all pairs (i,j)(i,j) such that 1<=i<=j<=n1<=i<=j<=n .

 

输入输出样例

输入样例#1: 
5
1 2 3 1 3
输出样例#1: 
4
输入样例#2: 
4
6 6 5 5
输出样例#2: 
0
输入样例#3: 
4
6 6 4 4
输出样例#3: 
-8

说明

In the first example:

  1. d(a_{1},a_{2})=0d(a1,a2)=0 ;
  2. d(a_{1},a_{3})=2d(a1,a3)=2 ;
  3. d(a_{1},a_{4})=0d(a1,a4)=0 ;
  4. d(a_{1},a_{5})=2d(a1,a5)=2 ;
  5. d(a_{2},a_{3})=0d(a2,a3)=0 ;
  6. d(a_{2},a_{4})=0d(a2,a4)=0 ;
  7. d(a_{2},a_{5})=0d(a2,a5)=0 ;
  8. d(a_{3},a_{4})=-2d(a3,a4)=2 ;
  9. d(a_{3},a_{5})=0d(a3,a5)=0 ;
  10. d(a_{4},a_{5})=2d(a4,a5)=2 .

 

算法很简单,,,,但是TM的要高精度gg

#include<bits/stdc++.h>
#define maxn 200005
#define ll long long
using namespace std;  
const int base = 1000000000;
const int base_digits = 9;

struct bigint {
    vector<int> z;
    int sign;

    bigint() : sign(1) { }

    bigint(long long v) { *this = v; }

    bigint(const string &s) { read(s); }

    void operator=(const bigint &v) {
        sign = v.sign;
        z = v.z;
    }

    void operator=(long long v) {
        sign = 1;
        if (v < 0)
            sign = -1, v = -v;
        z.clear();
        for (; v > 0; v = v / base)
            z.push_back(v % base);
    }

    bigint operator+(const bigint &v) const {
        if (sign == v.sign) {
            bigint res = v;

            for (int i = 0, carry = 0; i < (int) max(z.size(), v.z.size()) || carry; ++i) {
                if (i == (int) res.z.size())
                    res.z.push_back(0);
                res.z[i] += carry + (i < (int) z.size() ? z[i] : 0);
                carry = res.z[i] >= base;
                if (carry)
                    res.z[i] -= base;
            }
            return res;
        }
        return *this - (-v);
    }

    bigint operator-(const bigint &v) const {
        if (sign == v.sign) {
            if (abs() >= v.abs()) {
                bigint res = *this;
                for (int i = 0, carry = 0; i < (int) v.z.size() || carry; ++i) {
                    res.z[i] -= carry + (i < (int) v.z.size() ? v.z[i] : 0);
                    carry = res.z[i] < 0;
                    if (carry)
                        res.z[i] += base;
                }
                res.trim();
                return res;
            }
            return -(v - *this);
        }
        return *this + (-v);
    }

    void operator*=(int v) {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = 0, carry = 0; i < (int) z.size() || carry; ++i) {
            if (i == (int) z.size())
                z.push_back(0);
            long long cur = z[i] * (long long) v + carry;
            carry = (int) (cur / base);
            z[i] = (int) (cur % base);
            //asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base));
        }
        trim();
    }

    bigint operator*(int v) const {
        bigint res = *this;
        res *= v;
        return res;
    }

    friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) {
        int norm = base / (b1.z.back() + 1);
        bigint a = a1.abs() * norm;
        bigint b = b1.abs() * norm;
        bigint q, r;
        q.z.resize(a.z.size());

        for (int i = a.z.size() - 1; i >= 0; i--) {
            r *= base;
            r += a.z[i];
            int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
            int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
            int d = ((long long) s1 * base + s2) / b.z.back();
            r -= b * d;
            while (r < 0)
                r += b, --d;
            q.z[i] = d;
        }

        q.sign = a1.sign * b1.sign;
        r.sign = a1.sign;
        q.trim();
        r.trim();
        return make_pair(q, r / norm);
    }

    friend bigint sqrt(const bigint &a1) {
        bigint a = a1;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);

        int n = a.z.size();

        int firstDigit = (int) sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
        int norm = base / (firstDigit + 1);
        a *= norm;
        a *= norm;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);

        bigint r = (long long) a.z[n - 1] * base + a.z[n - 2];
        firstDigit = (int) sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
        int q = firstDigit;
        bigint res;

        for (int j = n / 2 - 1; j >= 0; j--) {
            for (; ; --q) {
                bigint r1 = (r - (res * 2 * base + q) * q) * base * base + (j > 0 ? (long long) a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
                if (r1 >= 0) {
                    r = r1;
                    break;
                }
            }
            res *= base;
            res += q;

            if (j > 0) {
                int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
                int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
                int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
                q = ((long long) d1 * base * base + (long long) d2 * base + d3) / (firstDigit * 2);
            }
        }

        res.trim();
        return res / norm;
    }

    bigint operator/(const bigint &v) const {
        return divmod(*this, v).first;
    }

    bigint operator%(const bigint &v) const {
        return divmod(*this, v).second;
    }

    void operator/=(int v) {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = (int) z.size() - 1, rem = 0; i >= 0; --i) {
            long long cur = z[i] + rem * (long long) base;
            z[i] = (int) (cur / v);
            rem = (int) (cur % v);
        }
        trim();
    }

    bigint operator/(int v) const {
        bigint res = *this;
        res /= v;
        return res;
    }

    int operator%(int v) const {
        if (v < 0)
            v = -v;
        int m = 0;
        for (int i = z.size() - 1; i >= 0; --i)
            m = (z[i] + m * (long long) base) % v;
        return m * sign;
    }

    void operator+=(const bigint &v) {
        *this = *this + v;
    }
    void operator-=(const bigint &v) {
        *this = *this - v;
    }
    void operator*=(const bigint &v) {
        *this = *this * v;
    }
    void operator/=(const bigint &v) {
        *this = *this / v;
    }

    bool operator<(const bigint &v) const {
        if (sign != v.sign)
            return sign < v.sign;
        if (z.size() != v.z.size())
            return z.size() * sign < v.z.size() * v.sign;
        for (int i = z.size() - 1; i >= 0; i--)
            if (z[i] != v.z[i])
                return z[i] * sign < v.z[i] * sign;
        return false;
    }

    bool operator>(const bigint &v) const {
        return v < *this;
    }
    bool operator<=(const bigint &v) const {
        return !(v < *this);
    }
    bool operator>=(const bigint &v) const {
        return !(*this < v);
    }
    bool operator==(const bigint &v) const {
        return !(*this < v) && !(v < *this);
    }
    bool operator!=(const bigint &v) const {
        return *this < v || v < *this;
    }

    void trim() {
        while (!z.empty() && z.back() == 0)
            z.pop_back();
        if (z.empty())
            sign = 1;
    }

    bool isZero() const {
        return z.empty() || (z.size() == 1 && !z[0]);
    }

    bigint operator-() const {
        bigint res = *this;
        res.sign = -sign;
        return res;
    }

    bigint abs() const {
        bigint res = *this;
        res.sign *= res.sign;
        return res;
    }

    long long longValue() const {
        long long res = 0;
        for (int i = z.size() - 1; i >= 0; i--)
            res = res * base + z[i];
        return res * sign;
    }

    friend bigint gcd(const bigint &a, const bigint &b) {
        return b.isZero() ? a : gcd(b, a % b);
    }
    friend bigint lcm(const bigint &a, const bigint &b) {
        return a / gcd(a, b) * b;
    }

    void read(const string &s) {
        sign = 1;
        z.clear();
        int pos = 0;
        while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+')) {
            if (s[pos] == '-')
                sign = -sign;
            ++pos;
        }
        for (int i = s.size() - 1; i >= pos; i -= base_digits) {
            int x = 0;
            for (int j = max(pos, i - base_digits + 1); j <= i; j++)
                x = x * 10 + s[j] - '0';
            z.push_back(x);
        }
        trim();
    }

    friend istream& operator>>(istream &stream, bigint &v) {
        string s;
        stream >> s;
        v.read(s);
        return stream;
    }

    friend ostream& operator<<(ostream &stream, const bigint &v) {
        if (v.sign == -1)
            stream << '-';
        stream << (v.z.empty() ? 0 : v.z.back());
        for (int i = (int) v.z.size() - 2; i >= 0; --i)
            stream << setw(base_digits) << setfill('0') << v.z[i];
        return stream;
    }

    static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
        vector<long long> p(max(old_digits, new_digits) + 1);
        p[0] = 1;
        for (int i = 1; i < (int) p.size(); i++)
            p[i] = p[i - 1] * 10;
        vector<int> res;
        long long cur = 0;
        int cur_digits = 0;
        for (int i = 0; i < (int) a.size(); i++) {
            cur += a[i] * p[cur_digits];
            cur_digits += old_digits;
            while (cur_digits >= new_digits) {
                res.push_back(int(cur % p[new_digits]));
                cur /= p[new_digits];
                cur_digits -= new_digits;
            }
        }
        res.push_back((int) cur);
        while (!res.empty() && res.back() == 0)
            res.pop_back();
        return res;
    }

    typedef vector<long long> vll;

    static vll karatsubaMultiply(const vll &a, const vll &b) {
        int n = a.size();
        vll res(n + n);
        if (n <= 32) {
            for (int i = 0; i < n; i++)
                for (int j = 0; j < n; j++)
                    res[i + j] += a[i] * b[j];
            return res;
        }

        int k = n >> 1;
        vll a1(a.begin(), a.begin() + k);
        vll a2(a.begin() + k, a.end());
        vll b1(b.begin(), b.begin() + k);
        vll b2(b.begin() + k, b.end());

        vll a1b1 = karatsubaMultiply(a1, b1);
        vll a2b2 = karatsubaMultiply(a2, b2);

        for (int i = 0; i < k; i++)
            a2[i] += a1[i];
        for (int i = 0; i < k; i++)
            b2[i] += b1[i];

        vll r = karatsubaMultiply(a2, b2);
        for (int i = 0; i < (int) a1b1.size(); i++)
            r[i] -= a1b1[i];
        for (int i = 0; i < (int) a2b2.size(); i++)
            r[i] -= a2b2[i];

        for (int i = 0; i < (int) r.size(); i++)
            res[i + k] += r[i];
        for (int i = 0; i < (int) a1b1.size(); i++)
            res[i] += a1b1[i];
        for (int i = 0; i < (int) a2b2.size(); i++)
            res[i + n] += a2b2[i];
        return res;
    }

    bigint operator*(const bigint &v) const {
        vector<int> a6 = convert_base(this->z, base_digits, 6);
        vector<int> b6 = convert_base(v.z, base_digits, 6);
        vll a(a6.begin(), a6.end());
        vll b(b6.begin(), b6.end());
        while (a.size() < b.size())
            a.push_back(0);
        while (b.size() < a.size())
            b.push_back(0);
        while (a.size() & (a.size() - 1))
            a.push_back(0), b.push_back(0);
        vll c = karatsubaMultiply(a, b);
        bigint res;
        res.sign = sign * v.sign;
        for (int i = 0, carry = 0; i < (int) c.size(); i++) {
            long long cur = c[i] + carry;
            res.z.push_back((int) (cur % 1000000));
            carry = (int) (cur / 1000000);
        }
        res.z = convert_base(res.z, 6, base_digits);
        res.trim();
        return res;
    }
}ans;

ll a[maxn],num[maxn],n,ky;
ll tot,cal,del,cnt[maxn];
int main(){
	scanf("%lld",&n);
	for(int i=1;i<=n;i++){
		scanf("%lld",a+i);
		num[i]=a[i];
	}
	
	sort(num+1,num+n+1);
	ky=unique(num+1,num+n+1)-num-1;
	
	ans=0;
	for(int i=1;i<=n;cnt[a[i]]++,tot+=num[a[i]],i++){
		a[i]=lower_bound(num+1,num+ky+1,a[i])-num;
		ans+=num[a[i]]*(ll)(i-1);
		ans-=tot;
		if(num[a[i]+1]==num[a[i]]+1) ans+=cnt[a[i]+1];
		if(num[a[i]-1]==num[a[i]]-1) ans-=cnt[a[i]-1];
		
	}
	
    cout<<ans<<endl;
	return 0;
}

  

posted @ 2018-02-06 15:48  蒟蒻JHY  阅读(279)  评论(0编辑  收藏  举报