word-ladder总结

题意

Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:

Only one letter can be changed at a time
Each intermediate word must exist in the word list
For example,

Given:
beginWord = "hit"

endWord = "cog"

wordList = ["hot","dot","dog","lot","log"]

As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",

return its length 5.

Note:
Return 0 if there is no such transformation sequence.
All words have the same length.
All words contain only lowercase alphabetic characters.

思路

因为上一个词到下一个词之间,变化的只是一个字母,因此只需遍历所有字母,进行替换即可;

利用BFS的思想,将改变后的字符串存进队列中,进行下一次的循环。

题解

这个的题解有很多种,但是其实都是使用了最基本的BFS思想;

交换队列,计算层数

int ladderLength(string begin, string end, unordered_set<string>& wordList) {
    // 当前层,下一层
    queue<string> current, next;
    // 判重
    unordered_set<string> visited;
    // 层次
    int level = 0;
    bool found = false;
    
    // 有点像内联函数
    auto state_is_target = [&](const string &s) {
        return s == end;
    };
    auto state_extend = [&](const string &s) {
        vector<string> result;
        
        for (size_t i = 0; i < s.size(); ++i) {
            string new_word(s);
            for (char c = 'a'; c <= 'z'; c++) {
                if (c == new_word[i]) continue;
                swap(c, new_word[i]);
                if (wordList.count(new_word) > 0 && !visited.count(new_word)) {
                    result.push_back(new_word);
                    visited.insert(new_word);
                }
                swap(c, new_word[i]);
            }
        }
        
        return result;
    };
    
    current.push(begin);
    
    while (!current.empty() && !found) {
        ++level;
        while (!current.empty() && !found) {
            const string str = current.front();
            current.pop();
            
            const auto& new_states = state_extend(str);
            for (const auto& state : new_states) {
                next.push(state);
                if (state_is_target(state)) {
                    //找到
                    found = true;
                    break;
                }
            }
        }
        swap(next, current);
    }
    
    if (found) return level + 1;
    else return 0;
}

总结:

使用了匿名函数,其中命名的state_is_target,state_extend是函数模版,分别做的操作就是判断字符串是否相等,返回字符串BFS遍历的下一层的数组;

同时用了两层循环,外循环用于计算层数和交换队列,内循环用于计算找到结尾字符串;

一个队列

/**
 *  改变单词中的字母, 查看是否存在
 *
 *  @param word     <#word description#>
 *  @param wordDict <#wordDict description#>
 *  @param toVisit  <#toVisit description#>
 */
void addNextWords(string word, unordered_set<string>& wordDict, queue<string>& toVisit) {
    // 删除wordDict中的word,因为相同的没有用
    wordDict.erase(word);
    
    for (int i = 0; i < (int)word.length(); i++) {
        // 记录下word的字母
        char letter = word[i];
        // 变换word中每个字母,一个一个字母的查找是否匹配,因为只能替换一个字母
        for (int j = 0; j < 26; j++) {
            word[i] = 'a' + j;
            // 找到后加入访问过的队列,并从wordDict中删除
            if (wordDict.find(word) != wordDict.end()) {
                toVisit.push(word);
                wordDict.erase(word);
            }
        }
        // 变换回去
        word[i] = letter;
    }
}
/**
 *  使用BFS
 *
 *  @param beginWord <#beginWord description#>
 *  @param endWord   <#endWord description#>
 *  @param wordDict  <#wordDict description#>
 *
 *  @return <#return value description#>
 */
int ladderLength2(string beginWord, string endWord, unordered_set<string>& wordDict) {
    // 加载最后的单词
    wordDict.insert(endWord);
    queue<string> toVisit;
    addNextWords(beginWord, wordDict, toVisit);
    
    // 从2开始,是因为需要经历开始和结尾的两个字母
    int dist = 2;
    // toVisit中存储的是通过改变一个字母就可以到达wordDict中存在的字符串
    while (!toVisit.empty()) {
        int num = (int)toVisit.size();
        for (int i = 0; i < num; i++) {
            string word = toVisit.front();
            toVisit.pop();
            if (word == endWord) return dist;
            addNextWords(word, wordDict, toVisit);
        }
        dist++;
    }
    
    return 0;
}

总结:

同样是计算BFS的层数;

两个指针

/**
 *  使用两个指针和BFS
 *
 *  @param beginWord <#beginWord description#>
 *  @param endWord   <#endWord description#>
 *  @param wordDict  <#wordDict description#>
 *
 *  @return <#return value description#>
 */
int ladderLength3(string beginWord, string endWord, unordered_set<string>& wordDict) {
    unordered_set<string> head, tail, *phead, *ptail;
    head.insert(beginWord);
    tail.insert(endWord);
    
    int dist = 2;
    // 将phead指向更小size的unordered_set以便减少运行时间
    while (!head.empty() && !tail.empty()) {
        if (head.size() < tail.size()) {
            phead = &head;
            ptail = &tail;
        }
        else {
            phead = &tail;
            ptail = &head;
        }
        unordered_set<string> temp;
        for (auto iterator = phead->begin(); iterator != phead->end(); iterator++) {
            string word = *iterator;
            wordDict.erase(word);
            
            // 原理和上面一样,更换其中的字符,
            for (int i = 0; i < (int)word.length(); i++) {
                char letter = word[i];
                for (int k = 0; k < 26; k++) {
                    word[i] = 'a' + k;
                    if (ptail->find(word) != ptail->end())
                        return dist;
                    if (wordDict.find(word) != wordDict.end()) {
                        temp.insert(word);
                        wordDict.erase(word);
                    }
                }
                word[i] = letter;
            }
        }
        dist++;
        swap(*phead, temp);
    }
    return 0;
}

总结:

两个指针指向了unordered_set的head和tail,其做法和第一种方法是相通的,只不过一个用了unordered_set,同时在循环前面还加上了根据数组大小判断指针指向不同的数组;

使用类

class WordNode {
public:
    string word;
    int numSteps;

public:
    WordNode(string w, int n) {
        this->word = w;
        this->numSteps = n;
    }
};
/**
 *  使用类去处理记录数据,和前面的思想是类似的
 *
 *  @param beginWord <#beginWord description#>
 *  @param endWord   <#endWord description#>
 *  @param wordDict  <#wordDict description#>
 *
 *  @return <#return value description#>
 */
int ladderLength4(string beginWord, string endWord, unordered_set<string>& wordDict) {
    queue<WordNode*> queue;
    queue.push(new WordNode(beginWord, 1));
    
    wordDict.insert(endWord);
    
    while (!queue.empty()) {
        WordNode * top = queue.front();
        queue.pop();
        
        string word = top->word;
        if (word == endWord) {
            return top->numSteps;
        }
        
        for (int i = 0; i < word.length(); i++) {
            char temp = word[i];  //先记录后面还有改回来
            for (char c = 'a'; c <= 'z'; c++) {
                if (temp != c) {
                    word[i] = c;
                }
                
                if (wordDict.find(word) != wordDict.end()) {
                    queue.push(new WordNode(word, top->numSteps + 1));
                    wordDict.erase(word);
                }
                
            }
            word[i] = temp;
        }
    }
    return 0;
}

总结:

使用类去记录每个字符串的单前遍历的层数,本质还是计算层数,只不过用类去保存,这样的好处就是减少了一些计算代码;

题意

Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transformation sequence(s) from beginWord to endWord, such that:

Only one letter can be changed at a time
Each intermediate word must exist in the word list
For example,

Given:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]
Return
[
["hit","hot","dot","dog","cog"],
["hit","hot","lot","log","cog"]
]
Note:
All words have the same length.
All words contain only lowercase alphabetic characters.

思路

肯定需要两个数组,一个用来存储当前已经存在的字符串,一个用来存放遍历结果的字符串,最后两者进行交换,直到遍历当前数组为空;还有一个重点在于可以利用邻接矩阵的思想,用map存储字符串和数组一一对应关系,最后根据顺序进行输出map即可;

代码

vector<string> temp_path;
vector<vector<string>> result_path;

/**
 *  生成路径(从后往前)
 *
 *  @param unordered_map<string <#unordered_map<string description#>
 *  @param path                 <#path description#>
 *  @param start                <#start description#>
 *  @param end                  <#end description#>
 */
void generatePath(unordered_map<string, unordered_set<string>>& path, const string& start, const string& end) {
    temp_path.push_back(start);
    
    if (start == end) {
        vector<string> ret = temp_path;
        reverse(ret.begin(), ret.end());
        result_path.push_back(ret);
        return ;
    }
    
    for (auto it = path[start].begin(); it != path[start].end(); it++) {
        generatePath(path, *it, end);
        temp_path.pop_back();
    }
}

/**
 *
 *
 *  @param beginWord <#beginWord description#>
 *  @param endWord   <#endWord description#>
 *  @param wordList  <#wordList description#>
 *
 *  @return <#return value description#>
 */
vector<vector<string>> findLadders(string beginWord, string endWord, unordered_set<string> &wordList) {
    temp_path.clear();
    result_path.clear();
    
    unordered_set<string> current_step;
    unordered_set<string> next_step;
    
    unordered_map<string, unordered_set<string>> path;
    
    unordered_set<string> unvisited = wordList; // 记录还没有访问过的结点
    
    if (unvisited.count(beginWord) > 0)
        unvisited.erase(beginWord);
    
    // 未访问过的值增加结尾字符串,开始处加入起点字符串
    unvisited.insert(endWord);
    current_step.insert(beginWord);
    
    while (current_step.count(endWord) == 0 && unvisited.size() > 0) {
        // 遍历当前层的所有元素
        for (auto cur = current_step.begin(); cur != current_step.end(); cur++) {
            string word = *cur;
            // 给字符串中的每个字符都替换字母
            for (int i = 0; i < beginWord.size(); i++) {
                for (int j = 0; j < 26; j++) {
                    string tmp = word;
                    // 相等情况下
                    if (tmp[i] == 'a' + j) {
                        continue;
                    }
                    
                    tmp[i] = 'a' + j;
                    // 表明字典中存在该字符串,可以到达下一步
                    if (unvisited.count(tmp) > 0) {
                        next_step.insert(tmp);
                        path[tmp].insert(word);
                    }
                }
            }
        }
        
        // 表明下一层中已经不存在任何没有访问过的
        if (next_step.empty()) {
            break;
        }
        
        // 清除所有没有访问过的值
        for (auto it = next_step.begin(); it != next_step.end(); it++) {
            unvisited.erase(*it);
        }
        
        current_step = next_step;
        next_step.clear();
    }
    
    // 存在结果
    if (current_step.count(endWord) > 0) {
        generatePath(path, endWord, beginWord);
    }
    
    return result_path;
}


/**
 *  建立树
 *
 *  @param forward              <#forward description#>
 *  @param backward             <#backward description#>
 *  @param dict                 <#dict description#>
 *  @param unordered_map<string <#unordered_map<string description#>
 *  @param tree                 <#tree description#>
 *  @param reversed             <#reversed description#>
 *
 *  @return <#return value description#>
 */
bool buildTree(unordered_set<string> &forward, unordered_set<string> &backward, unordered_set<string> &dict, unordered_map<string, vector<string> > &tree, bool reversed)
{
    if (forward.empty()) return false;
    // 如果开头的长度比结尾长,则从结尾开始找到开头
    if (forward.size() > backward.size())
        return buildTree(backward, forward, dict, tree, !reversed);
    
    // 存在开头和结尾则删除
    for (auto &word: forward) dict.erase(word);
    for (auto &word: backward) dict.erase(word);
    
    unordered_set<string> nextLevel; // 存储树的下一层
    bool done = false; //是否进一步搜索
    for (auto &it: forward) //从树的当前层进行遍历
    {
        string word = it;
        for (auto &c: word)
        {
            char c0 = c; //存储初始值
            for (c = 'a'; c <= 'z'; ++c)
            {
                if (c != c0)
                {
                    // 说明找到最终结果
                    if (backward.count(word))
                    {
                        done = true; //找到
                        !reversed ? tree[it].push_back(word) : tree[word].push_back(it); //keep the tree generation direction consistent;
                    }
                    // 说明还没找到最终结果但是在字典中找到
                    else if (!done && dict.count(word))
                    {
                        nextLevel.insert(word);
                        !reversed ? tree[it].push_back(word) : tree[word].push_back(it);
                    }
                }
            }
            c = c0; //restore the word;
        }
    }
    return done || buildTree(nextLevel, backward, dict, tree, reversed);
}
/**
 *  生成路径
 *
 *  @param beginWord            <#beginWord description#>
 *  @param endWord              <#endWord description#>
 *  @param unordered_map<string <#unordered_map<string description#>
 *  @param tree                 <#tree description#>
 *  @param path                 <#path description#>
 *  @param paths                <#paths description#>
 */
void getPath(string &beginWord, string &endWord, unordered_map<string, vector<string> > &tree, vector<string> &path, vector<vector<string> > &paths) //using reference can accelerate;
{
    if (beginWord == endWord) paths.push_back(path); //till the end;
    else
    {
        for (auto &it: tree[beginWord])
        {
            path.push_back(it);
            getPath(it, endWord, tree, path, paths); //DFS retrieving the path;
            path.pop_back();
        }
    }
}

vector<vector<string>> findLadders2(string beginWord, string endWord, unordered_set<string> &dict) {
    vector<vector<string> > paths;
    vector<string> path(1, beginWord);
    if (beginWord == endWord)
    {
        paths.push_back(path);
        return paths;
    }
    
    // 分别存储开头和结尾
    unordered_set<string> forward, backward;
    forward.insert(beginWord);
    backward.insert(endWord);
    
    unordered_map<string, vector<string> > tree;
    // 用来判断是从开头找到结尾还是从结尾找到开头,因为会从长度短的一方开始进行查找
    bool reversed = false;
    if (buildTree(forward, backward, dict, tree, reversed))
        getPath(beginWord, endWord, tree, path, paths);
    return paths;
}

bool test() {
    unordered_set<string> words = {"hot","dot","dog","lot","log"};
    string start = "hit", end = "cog";
    
    vector<vector<string>> result = findLadders2(start, end, words);
    
    for (auto i = 0; i < result.size(); ++i) {
        for (auto j = 0; j < result[0].size(); ++j) {
            cout << result[i][j] << "->";
        }
        cout << endl;
    }
    return true;
}

这两种方法其实是一样的;

posted @ 2017-02-15 06:17  banananana  阅读(485)  评论(0编辑  收藏  举报