poj 3259 Wormholes
题目连接
http://poj.org/problem?id=3259
Wormholes
Description
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1: A single integer, F. F farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2..M+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2..M+W+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).
Sample Input
2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
Sample Output
NO
YES
spfa判断负环。。
#include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<vector> #include<queue> #include<map> using std::map; using std::min; using std::find; using std::pair; using std::queue; using std::vector; using std::multimap; #define pb(e) push_back(e) #define sz(c) (int)(c).size() #define mp(a, b) make_pair(a, b) #define all(c) (c).begin(), (c).end() #define iter(c) __typeof((c).begin()) #define cls(arr, val) memset(arr, val, sizeof(arr)) #define cpresent(c, e) (find(all(c), (e)) != (c).end()) #define rep(i, n) for(int i = 0; i < (int)n; i++) #define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i) const int N = 510; const int INF = 0x3f3f3f3f; struct SPFA { struct edge { int to, w, next; }G[N * 10]; bool vis[N]; int tot, inq[N], head[N], dist[N]; inline void init(int n) { tot = 0; rep(i, n + 1) { head[i] = -1; inq[i] = vis[i] = 0; dist[i] = INF; } } inline void add_edge(int u, int v, int w) { G[tot] = (edge){ v, w, head[u] }; head[u] = tot++; } inline void built(int m, int w) { int u, v, x; while(m--) { scanf("%d %d %d", &u, &v, &x); add_edge(u, v, x), add_edge(v, u, x); } while(w--) { scanf("%d %d %d", &u, &v, &x); add_edge(u, v, -x); } } inline bool spfa(int n, int s = 1) { queue<int> q; q.push(s); dist[s] = 0, vis[s] = true; while(!q.empty()) { int u = q.front(); q.pop(); vis[u] = false; for(int i = head[u]; ~i; i = G[i].next) { edge &e = G[i]; if(dist[e.to] > dist[u] + e.w) { dist[e.to] = dist[u] + e.w; if(!vis[e.to]) { vis[e.to] = true; q.push(e.to); inq[e.to]++; } } if(inq[e.to] > n) return true; } } return false; } inline void solve(int n, int m, int w) { init(n), built(m, w); puts(spfa(n) ? "YES" : "NO"); } }go; int main() { #ifdef LOCAL freopen("in.txt", "r", stdin); freopen("out.txt", "w+", stdout); #endif int t, n, m, w; scanf("%d", &t); while(t--) { scanf("%d %d %d", &n, &m, &w); go.solve(n, m, w); } return 0; }