K均值聚类
聚类(cluster)与分类的不同之处在于, 分类算法训练过程中样本所属的分类是已知的属监督学习. 而聚类算法不需要带有分类的训练数据,而是根据样本特征的相似性将其分为几类,又称为无监督分类.
K均值聚类(K-means cluster)算法是一种比较简单的聚类算法:
-
在特征空间中选择k个质心,每个质心代表一个分类
-
对于每个样本点计算其到各质心的距离,将其归入最近质心的类中
-
对于每个类计算所有样本点的均值,作为新的质心
-
反复执行
2
,3
直至所有样本点分类均不再发生变化为止.
上述算法中的距离可以采用不同的定义, 最常见的为欧式距离:
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2)))
初始质心可以在数据集边界内随机选取:
def randCent(dataSet, k):
n = shape(dataSet)[1]
centers = mat(zeros((k, n)))
for j in range(n):
minJ = min(dataSet[:, j])
rangeJ = float(max(dataSet[:, j]) - minJ)
centers[:, j] = mat(minJ + rangeJ * random.rand(k, 1))
return centers
实现KMean算法:
def kMeans(dataSet, k, distMethod=distEclud, createCent=randCent):
m = shape(dataSet)[0]
clusterAssess = mat(zeros((m, 2)))
centers = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m): # for each sample
# get closest center
minDist = inf
minIndex = -1
for j in range(k): # for each class
dist = distMethod(centers[j, :], dataSet[i, :])
if dist < minDist:
minDist = dist
minIndex = j
if clusterAssess[i, 0] != minIndex:
clusterChanged = True
clusterAssess[i, :] = minIndex, minDist ** 2
# update center
for cent in range(k):
ptsInClust = dataSet[nonzero(clusterAssess[:, 0].A == cent)[0]]
centers[cent, :] = mean(ptsInClust, axis=0)
return centers, clusterAssess
centers为所有质心的坐标列表, clusterAssess记录了每个点的序号和距其质心距离的平方.
定义误差平方和(Sum of Squared Error, SSE)为所有样本点距其质心的距离平方和, 误差越小则聚类效果越好.
K-Mean算法很容易实现,但是需要手动指定分类数k故而在实际应用中非常不便.
二分K均值算法是该问题的一种解决方案, 该算法仅需指定最大的分类数而自行选择最佳分类数:
-
将整个数据集作为一个分类
-
使用kMeans算法将其进行二分类
-
选择误差较大的分类进行进一步划分
算法实现:
def binKMeans(dataSet, k, distMethod=distEclud):
m = shape(dataSet)[0]
clusterAssess = mat(zeros((m, 2)))
originCenters = mean(dataSet, axis=0).tolist()[0]
centers = [originCenters]
# get origin error
for j in range(m):
clusterAssess[j, 1] = distMethod(mat(originCenters), dataSet[j, :]) ** 2
# try to cluster
while (len(centers) < k):
# get best spilt
minError = inf
for i in range(len(centers)):
ptsInCurrCluster = dataSet[nonzero(clusterAssess[:, 0].A == i)[0], :]
splitCenter, splitAssess = kMeans(ptsInCurrCluster, 2, distMethod)
spiltError = sum(splitAssess[:, 1])
formerError = sum(clusterAssess[nonzero(clusterAssess[:, 0].A != i)[0], 1])
if (spiltError + formerError) < minError:
bestCentToSplit = i
bestNewCents = splitCenter
bestClustAss = splitAssess.copy()
minError = spiltError + formerError
# update assessment
bestClustAss[nonzero(bestClustAss[:, 0].A == 1)[0], 0] = len(centers)
bestClustAss[nonzero(bestClustAss[:, 0].A == 0)[0], 0] = bestCentToSplit
# update global centers and assessment
centers[bestCentToSplit] = bestNewCents[0, :].tolist()[0]
centers.append(bestNewCents[1, :].tolist()[0])
clusterAssess[nonzero(clusterAssess[:, 0].A == bestCentToSplit)[0], :] = bestClustAss
return centers, clusterAssess
Keep working, we will find a way out.
This is Finley, welcome to join us.