dijkstra算法 模板
算法理解见: https://www.bilibili.com/video/av18586085/?p=83
模板:
1 #define INF 1000000000 2 3 int N; 4 int dist[101], g[101][101]; 5 int vis[101]; 6 int path[101]; // path[i]表示在最短路径中,i的上一个点 7 8 void init() // 初始化 9 { 10 for (int i = 1; i <= N; ++i) 11 { 12 for (int j = 1; j <= N; ++j) 13 { 14 if (i == j) 15 g[i][j] = 0; 16 else 17 g[i][j] = INF; 18 } 19 } 20 } 21 22 void dijkstra(int start) 23 { 24 for(int i = 0; i <= N; ++i) 25 { 26 dist[i] = INF; 27 vis[i] = 0; 28 path[i] = -1; 29 } 30 dist[start] = 0; 31 32 while (1) 33 { 34 int mark = -1, mindis = INF; 35 for (int i = 1; i <= N; i++) 36 { 37 if (!vis[i] && dist[i] < mindis) 38 { 39 mindis = dist[i]; 40 mark = i; 41 } 42 } 43 if (mark == -1) // 找不到未收录的节点,则说明算法结束,退出 44 break; 45 vis[mark] = 1; 46 47 for (int i = 1; i <= N; i++) 48 { 49 if(!vis[i] && dist[mark] + g[mark][i] < dist[i]) 50 { 51 dist[i] = dist[mark] + g[mark][i]; 52 path[i] = mark; // 记录路径 53 } 54 } 55 } 56 57 // 逆序打印路径 58 int k = Sp; //假设终点是Sp 59 while(k != -1) 60 { 61 printf("%d ", k); 62 k = path[k]; 63 } 64 printf("%d", start); 65 }