随笔分类 - 数据挖掘
摘要:1. kNN1.1 基本的kNN模型 kNN(k-nearest neighbor)的思想简单来说就是,要评价一个未知的东西U,只需找k个与U相似的已知的东西,并通过k个已知的,对U进行评价。假如要预测风炎君对一部电影M的评分,根据kNN的思想,我们可以先找出k个与风炎君相似的,并且对M进行过评分的用户,然后再用这k个用户的评分预测风炎君对M的评分。又或者先找出k个与M相似的,并且风炎君评价过的电影,然后再用这k部电影的评分预测风炎君对M的评分。在这个例子中,找相似用户的方法叫做user-based kNN,找相似物品的方法叫做item-based kNN。这两种方法的思想和实现都大同小异,.
阅读全文
摘要:1. 谱聚类 给你博客园上若干个博客,让你将它们分成K类,你会怎样做?想必有很多方法,本文要介绍的是其中的一种——谱聚类。 聚类的直观解释是根据样本间相似度,将它们分成不同组。谱聚类的思想是将样本看作顶点,样本间的相似度看作带权的边,从而将聚类问题转为图分割问题:找到一种图分割的方法使得连接不同组的边的权重尽可能低(这意味着组间相似度要尽可能低),组内的边的权重尽可能高(这意味着组内相似度要尽可能高)。将上面的例子代入就是将每一个博客当作图上的一个顶点,然后根据相似度将这些顶点连起来,最后进行分割。分割后还连在一起的顶点就是同一类了。更具体的例子如下图所示:在上图中,一共有6个顶点(博客),顶
阅读全文
摘要:1. SVD简介假如要预测Zero君对一部电影M的评分,而手上只有Zero君对若干部电影的评分和风炎君对若干部电影的评分(包含M的评分)。那么能预测出Zero君对M的评分吗?答案显然是能。最简单的方法就是直接将预测分定为平均分。不过这时的准确度就难说了。本文将介绍一种比这个最简单的方法要准上许多,并且也不算复杂的算法。 SVD(Singular Value Decomposition)的想法是根据已有的评分情况,分析出评分者对各个因子的喜好程度以及电影包含各个因子的程度,最后再反过来根据分析结果预测评分。电影中的因子可以理解成这些东西:电影的搞笑程度,电影的爱情爱得死去活来的程度,电影的恐怖程
阅读全文
摘要:1. 前言这系列的文章主要讲述2006年评出的数据挖掘10大算法(见图1)。文章的重点将偏向于算法的来源以及算法的主要思想,不涉及具体的实现。如果发现文中有错,希望各位指出来,一起讨论。 图1 来自IDMer的文章 在这些算法中,最引人注目的自然是Google的核心技术之一——PageRank。因此本系列就先来探索PageRank的诞生过程。2. 核心思想 常言道,看一个人怎样,看他有什么朋友就知道了。也就是说,一个人有着越多牛X朋友的人,他是牛X的概率就越大。将这个知识迁移到网页上就是“被越多优质的网页所指的网页,它是优质的概率就越大”。PageRank的核心思想就是上述简单却有效的观点。.
阅读全文