Apache Flume 学习笔记

# 从http://flume.apache.org/download.html 下载flume
#############################################
# 概述:Flume 是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的软件。
# Flume的核心是把数据从数据源(source)收集过来,送到指定的目的地(sink)。为了保证输送的过程一定
# 成功,在送到目的地(sink)之前,会先缓存数据(channel),待数据真正到达目的地(sink)后,再删除自
# 己缓存的数据。
#############################################
# 上传到Linux,
tar zxvf apache-flume-1.8.0-bin.tar.gz
rm -rf apache-flume-1.8.0-bin.tar.gz
mv apache-flume-1.8.0-bin/ flume-1.8.0
cd flume-1.8.0/conf/
cp flume-env.sh.template flume-env.sh

vim flume-env.sh
# 导入正确的JDK路径
export JAVA_HOME=/usr/local/src/jdk1.8.0_161


########################################
# 从网络端口接收数据,下沉到logger
######################################## 采集配置文件,netcat-logger.conf

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the sources
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444

# Describe the sinks
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

######################################## 采集配置文件 结束

# 启动命令
bin/flume-ng agent --conf conf/ --conf-file conf/netcat-logger.conf --name a1 -Dflume.root.logger=INFO,console
# 将出现监听: Created serverSocket:sun.nio.ch.ServerSocketChannelImpl[/127.0.0.1:44444]
# 用另一个终端来测试:
yum install -y telnet
telnet localhost 44444 # 登录成功会显示 Connected to localhost.  Escape character is '^]'.
hello, world.  # 发送一段文字。 看启动监听的终端有没有收到。
# 监听端:2018-05-27 20:33:29,974 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 68 65 6C 6C 6F 2C 77 6F 72 6C 64 2E 0D          hello,world.. }




##########################################
# 采集目录到HDFS上。# 启动好HDFS,
################################## spooldir-hdfs.cnf 文件:

#Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the sources
# 注意不能往监控目录中重复放置同名文件,一旦重名,服务将出错并停止。
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /root/logs
a1.sources.r1.fileHeader = true

# Describe the sinks
a1.sinks.k1.type = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = /flume/events/%y-%m-%d/%H%M/
a1.sinks.k1.hdfs.filePrefix = events-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = minute
a1.sinks.k1.hdfs.rollInterval = 3
a1.sinks.k1.hdfs.rollSize = 20
a1.sinks.k1.hdfs.rollCount = 5
a1.sinks.k1.hdfs.batchSize = 1
a1.sinks.k1.hdfs.useLocalTimeStamp = true
# 生成的文件类型,默认是Sequencefile, 可用DataStream ,则为普通文本
a1.sinks.k1.hdfs.fileType = DataStream

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

##################################

# 启动命令 如果/root/logs中已有文件,则会被立刻采集到HDFS 
bin/flume-ng agent -c conf/ -f conf/spooldir-hdfs.cnf -n a1 -Dflume.root.logger=INFO,console
# 成功后:2018-05-27 22:08:02,505 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:95)] Component type: SOURCE, name: r1 started

# 在/root/logs/下创建一个文件,监听端会显示:Writer callback called.
# HDFS上则得到文件:/flume/events/18-05-27/2210/events-.1527430208616
# 注意 spooldir 不能往源目录/root/logs/中重复放置同名文件,一旦重名,服务将出错并停止工作。




##########################################
### 增量采集内容变化的文件到HDFS 
########################################## tail-hdfs.cnf 文件

#Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the sources
# 注意不能往监控目录中重复放置同名文件,一旦重名,服务将出错并停止。
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /root/logs/test.log
a1.sources.r1.channels = c1

# Describe the sinks
a1.sinks.k1.type = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = /flume/tailout/%y-%m-%d/%H%M/
a1.sinks.k1.hdfs.filePrefix = events-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = minute
a1.sinks.k1.hdfs.rollInterval = 3
a1.sinks.k1.hdfs.rollSize = 20
a1.sinks.k1.hdfs.rollCount = 5
a1.sinks.k1.hdfs.batchSize = 1
a1.sinks.k1.hdfs.useLocalTimeStamp = true
# 生成的文件类型,默认是Sequencefile, 可用DataStream ,则为普通文本
a1.sinks.k1.hdfs.fileType = DataStream

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

##########################################
# 启动命令 如果/root/logs中已有文件,则会被立刻采集到HDFS 
bin/flume-ng agent -c conf -f conf/tail-hdfs.cnf -n a1 -Dflume.root.logger=INFO,console

# 模拟数据不断写入.
while true; do date >>/root/logs/test.log;sleep 1.5;done




########################################## 
#Load balance 负载均衡
##########################################
# 使用三台机器,设置二级flume, 前面一台采集,使用轮询方式发往后面的二台,后二台再收集前一台发来的数据,下沉到目标。
scp -r flume-1.8.0/ slave2:/usr/local/src/
scp -r flume-1.8.0/ slave3:/usr/local/src/

# 使用slave1在最前,slave2 , slave3在其后的方式。

################# 第一级slave1 配置文件:exec-avro.cnf

#agent1 name
agent1.channels = c1
agent1.sources = r1
agent1.sinks = k1 k2


# set group
agent1.sinkgroups = g1

# set channel
agent1.channels.c1.type = memory
agent1.channels.c1.capacity = 1000
agent1.channels.c1.transactionCapacity = 100

agent1.sources.r1.channels = c1
agent1.sources.r1.type = exec
agent1.sources.r1.command = tail -F /root/logs/123.log

# set sink1
agent1.sinks.k1.channel = c1
agent1.sinks.k1.type = avro
agent1.sinks.k1.hostname = slave2
agent1.sinks.k1.port = 52020

# set sink2
agent1.sinks.k2.channel = c1
agent1.sinks.k2.type = avro
agent1.sinks.k2.hostname = slave3
agent1.sinks.k2.port = 52020

# set sink group
agent1.sinkgroups.g1.sinks = k1 k2

# set failover
agent1.sinkgroups.g1.processor.type = load_balance
agent1.sinkgroups.g1.processor.backoff = true
agent1.sinkgroups.g1.processor.selector = round_robin
agent1.sinkgroups.g1.processor.selector.maxTimeOut = 10000

############# end ##############

################# 第二级slave2 配置文件:avro-logger.cnf

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the sources
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = slave2
a1.sources.r1.port = 52020

# Describe the sinks
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

############# slave2 end ##############

################# 第二级slave3 配置文件:avro-logger.cnf 唯一的改变是slave3

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the sources
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = slave3
a1.sources.r1.port = 52020

# Describe the sinks
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

############# slave3 end ##############

## 先启动第二级的slave2, slave3 
bin/flume-ng agent -c conf -f conf/avro-logger.cnf -n a1 -Dflume.root.logger=INFO,console
## 再启动一级的slave1 
bin/flume-ng agent -c conf -f conf/exec-avro.cnf -n agent1 -Dflume.root.logger=INFO,console
# 启动成功后,第二级终端会出现类似:CONNECTED: /192.168.112.11:56404 
# 而后续终止第一级时,第二级会出现类似: /192.168.112.11:56404 disconnected. 

# 模拟数据写入. 会看到仅第二级有采集动作,第一级不作显示。
while true; do date >>/root/logs/123.log;sleep 1;done


############################################# 
#  Failover 容错
#  同一时间后端只有一台机器工作.
#############################################
# 还是使用三台机器,设置二级flume, 前面一台采集,发往后面的某一台,优先级最高的收集前一台发来的数据;
# 如果这台机器挂了,另一台自动替补
scp -r flume-1.8.0/ slave2:/usr/local/src/
scp -r flume-1.8.0/ slave3:/usr/local/src/

# 使用slave1在最前,slave2 , slave3在其后的方式。

################# 第一级slave1 配置文件:exec-avro.cnf

#agent1 name
agent1.channels = c1
agent1.sources = r1
agent1.sinks = k1 k2


# set group
agent1.sinkgroups = g1

# set channel
agent1.channels.c1.type = memory
agent1.channels.c1.capacity = 1000
agent1.channels.c1.transactionCapacity = 100

agent1.sources.r1.channels = c1
agent1.sources.r1.type = exec
agent1.sources.r1.command = tail -F /root/logs/456.log

# set sink1
agent1.sinks.k1.channel = c1
agent1.sinks.k1.type = avro
agent1.sinks.k1.hostname = slave2
agent1.sinks.k1.port = 52020

# set sink2
agent1.sinks.k2.channel = c1
agent1.sinks.k2.type = avro
agent1.sinks.k2.hostname = slave3
agent1.sinks.k2.port = 52020

# set sink group
agent1.sinkgroups.g1.sinks = k1 k2

# set failover
agent1.sinkgroups.g1.processor.type = failover
agent1.sinkgroups.g1.processor.priority.k1 = 10
agent1.sinkgroups.g1.processor.priority.k2 = 1
agent1.sinkgroups.g1.processor.maxpenalty = 10000

############# end ##############

################# 第二级slave2 配置文件:avro-logger.cnf

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the sources
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = slave2
a1.sources.r1.port = 52020

# Describe the sinks
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

############# slave2 end ##############

################# 第二级slave3 配置文件:avro-logger.cnf 唯一的改变是slave3

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the sources
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = slave3
a1.sources.r1.port = 52020

# Describe the sinks
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

############# slave3 end ##############

## 先启动第二级的slave3, slave2 
bin/flume-ng agent -c conf -f conf/avro-logger.cnf -n a1 -Dflume.root.logger=INFO,console
## 再启动一级的slave1 
bin/flume-ng agent -c conf -f conf/exec-avro.cnf -n agent1 -Dflume.root.logger=INFO,console
# 启动成功后,第二级终端会出现类似:CONNECTED: /192.168.112.11:56404 
# 而后续终止第一级时,第二级会出现类似: /192.168.112.11:56404 disconnected. 

# 模拟数据写入. 会看到仅第二级slave2有采集动作,第一级不作显示。slave3待命。
while true; do date >>/root/logs/123.log;sleep 1;done
# 一旦slave2终止,则slave3自动顶上,继续接收。
复制代码

 

更新一个练习:

复制代码
################################################################ 
# 案例:
# A、B两台日志服务器实时生产日志,主要类型为access.log, nginx.log, web.log
# 要求:把A、B中的三种日志采集汇总到C机器上,然后收集到HDFS
# 且HDFS中要求按类别存放到不同的目录
################################################################
### 现将slave1 slave2 slave3 分别对应A B C
### A & B 配置文件 exec_source_avro_sink.conf 基本上一样,仅hostname不一样

# Name the components on this agent
a1.sources = r1 r2 r3 
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /root/logs1/access.log
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
a1.sources.r1.interceptors.i1.key = type
a1.sources.r1.interceptors.i1.value = access

a1.sources.r2.type = exec
a1.sources.r2.command = tail -F /root/logs1/nginx.log
a1.sources.r2.interceptors = i2
a1.sources.r2.interceptors.i2.type = static
a1.sources.r2.interceptors.i2.key = type
a1.sources.r2.interceptors.i2.value = nginx

a1.sources.r3.type = exec
a1.sources.r3.command = tail -F /root/logs1/web.log
a1.sources.r3.interceptors = i3
a1.sources.r3.interceptors.i3.type = static
a1.sources.r3.interceptors.i3.key = type
a1.sources.r3.interceptors.i3.value = web

# Describe the sink 发送到下一级主机
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = slave3
a1.sinks.k1.port = 41414

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 2000000
a1.channels.c1.transactionCapacity = 100000

# Bind the sourceand sink to the channel
a1.sources.r1.channels = c1
a1.sources.r2.channels = c1
a1.sources.r3.channels = c1
a1.sinks.k1.channel = c1
### end ###


### C 配置文件 avro_source_hdfs_sink.conf

# 定义agent名, source channel sink的名称
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# 定义source
a1.sources.r1.type = avro
a1.sources.r1.bind = slave3
a1.sources.r1.port = 41414

# 添加时间拦截器
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = org.apache.flume.interceptor.TimestampInterceptor$Builder

# 定义channels
a1.channels.c1.type = memory
a1.channels.c1.capacity = 20000
a1.channels.c1.transactionCapacity = 10000

# 定义sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://master:9000/source/logs/%{type}/%Y%m%d
a1.sinks.k1.hdfs.filePrefix = events
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.writeFormat = Text

# 时间类型
# a1.sinks.k1.hdfs.useLocalTimeStamp = true
# 生成的文件不按条数生成
a1.sinks.k1.hdfs.rollCount = 0
# 生成的文件不按时间生成
a1.sinks.k1.hdfs.rollInterval = 30
# 生成的文件按大小生成
a1.sinks.k1.hdfs.rollSize = 10485760
# 批量写入HDFS的个数
a1.sinks.k1.hdfs.batchSize = 20
# flume操作hdfs的线程数(包括新建,写入等)
a1.sinks.k1.hdfs.threadsPoolSize = 10
# 操作hdfs超时时间
a1.sinks.k1.hdfs.callTimeout = 30000

# 组装source channel sink
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

### end ###

## 先启动第二级的slave2 
bin/flume-ng agent -c conf -f conf/avro_source_hdfs_sink.conf -name a1 -Dflume.root.logger=DEBUG,console
## 再启动一级的slave1 
bin/flume-ng agent -c conf -f conf/exec_source_avro_sink.conf -name a1 -Dflume.root.logger=DEBUG,console
# 启动成功后,slave2会出现类似:CONNECTED: /192.168.112.11:56404 

# 模拟数据写入. 
while true; do echo "access..  `date` " >>/root/logs1/access.log;sleep 1;done
while true; do echo "nginx..  `date` " >>/root/logs1/nginx.log;sleep 1;done
while true; do echo "web..  `date` " >>/root/logs1/web.log;sleep 1;done

# 查看hdfs上采集成功。

posted on 2018-12-25 15:49  FHBIAO  阅读(137)  评论(0编辑  收藏  举报

导航