[转载][翻译]Go的50坑:新Golang开发者要注意的陷阱、技巧和常见错误[2]
Golang作为一个略古怪而新的语言,有自己一套特色和哲学。从其他语言转来的开发者在刚接触到的时候往往大吃苦头,我也不例外。这篇文章很细致地介绍了Golang的一些常见坑点,读完全篇中枪好多次。故将其转载。由于文章很长,分为上下两部分,第一部分记录初级篇,第二部分记录进阶和高级篇:此为第二部分,若要看第一部分,请转至这里
感谢原文作者Kyle Quest以及翻译者影风LEY。出处见下:
原文链接:http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/
译文链接:http://www.shwley.com/index.php/archives/80/以及http://www.shwley.com/index.php/archives/82/。转载已获得授权。
目录
- 初级篇
- 开大括号不能放在单独的一行
- 未使用的变量
- 未使用的Imports
- 简式的变量声明仅可以在函数内部使用
- 使用简式声明重复声明变量
- 偶然的变量隐藏Accidental Variable Shadowing
- 不使用显式类型,无法使用“nil”来初始化变量
- 使用“nil” Slices and Maps
- Map的容量
- 字符串不会为“nil”
- Array函数的参数
- 在Slice和Array使用“range”语句时的出现的不希望得到的值
- Slices和Arrays是一维的
- 访问不存在的Map Keys
- Strings无法修改
- String和Byte Slice之间的转换
- String和索引操作
- 字符串不总是UTF8文本
- 字符串的长度
- 在多行的Slice、Array和Map语句中遗漏逗号
- log.Fatal和log.Panic不仅仅是Log
- 内建的数据结构操作不是同步的
- String在“range”语句中的迭代值
- 对Map使用“for range”语句迭代
- "switch"声明中的失效行为
- 自增和自减
- 按位NOT操作
- 操作优先级的差异
- 未导出的结构体不会被编码
- 有活动的Goroutines下的应用退出
- 向无缓存的Channel发送消息,只要目标接收者准备好就会立即返回
- 向已关闭的Channel发送会引起Panic
- 使用"nil" Channels
- 传值方法的接收者无法修改原有的值
- 进阶篇
- 关闭HTTP的响应
- 关闭HTTP的连接
- 比较Structs, Arrays, Slices, and Maps
- 从Panic中恢复
- 在Slice, Array, and Map "range"语句中更新引用元素的值
- 在Slice中"隐藏"数据
- Slice的数据“毁坏”
- "走味的"Slices
- 类型声明和方法
- 从"for switch"和"for select"代码块中跳出
- "for"声明中的迭代变量和闭包
- Defer函数调用参数的求值
- 被Defer的函数调用执行
- 失败的类型断言
- 阻塞的Goroutine和资源泄露
- 高级篇
- 使用指针接收方法的值的实例
- 更新Map的值
- "nil" Interfaces和"nil" Interfaces的值
- 栈和堆变量
- GOMAXPROCS, 并发, 和并行
- 读写操作的重排顺序
- 优先调度
进阶篇
关闭HTTP的响应
- level: intermediate
当你使用标准http库发起请求时,你得到一个http的响应变量。如果你不读取响应主体,你依旧需要关闭它。注意对于空的响应你也一定要这么做。对于新的Go开发者而言,这个很容易就会忘掉。
一些新的Go开发者确实尝试关闭响应主体,但他们在错误的地方做。
package main
import (
"fmt"
"net/http"
"io/ioutil"
)
func main() {
resp, err := http.Get("https://api.ipify.org?format=json")
defer resp.Body.Close()//not ok
if err != nil {
fmt.Println(err)
return
}
body, err := ioutil.ReadAll(resp.Body)
if err != nil {
fmt.Println(err)
return
}
fmt.Println(string(body))
}
这段代码对于成功的请求没问题,但如果http的请求失败, resp
变量可能会是 nil
,这将导致一个runtime panic。
最常见的关闭响应主体的方法是在http响应的错误检查后调用 defer
。
package main
import (
"fmt"
"net/http"
"io/ioutil"
)
func main() {
resp, err := http.Get("https://api.ipify.org?format=json")
if err != nil {
fmt.Println(err)
return
}
defer resp.Body.Close()//ok, most of the time :-)
body, err := ioutil.ReadAll(resp.Body)
if err != nil {
fmt.Println(err)
return
}
fmt.Println(string(body))
}
大多数情况下,当你的http响应失败时, resp
变量将为 nil
,而 err
变量将是 non-nil
。然而,当你得到一个重定向的错误时,两个变量都将是 non-nil
。这意味着你最后依然会内存泄露。
通过在http响应错误处理中添加一个关闭 non-nil
响应主体的的调用来修复这个问题。另一个方法是使用一个 defer
调用来关闭所有失败和成功的请求的响应主体。
package main
import (
"fmt"
"net/http"
"io/ioutil"
)
func main() {
resp, err := http.Get("https://api.ipify.org?format=json")
if resp != nil {
defer resp.Body.Close()
}
if err != nil {
fmt.Println(err)
return
}
body, err := ioutil.ReadAll(resp.Body)
if err != nil {
fmt.Println(err)
return
}
fmt.Println(string(body))
}
resp.Body.Close()
的原始实现也会读取并丢弃剩余的响应主体数据。这确保了http的链接在keepalive http连接行为开启的情况下,可以被另一个请求复用。最新的http客户端的行为是不同的。现在读取并丢弃剩余的响应数据是你的职责。如果你不这么做,http的连接可能会关闭,而无法被重用。这个小技巧应该会写在Go 1.5的文档中。
如果http连接的重用对你的应用很重要,你可能需要在响应处理逻辑的后面添加像下面的代码:
_, err = io.Copy(ioutil.Discard, resp.Body)
如果你不立即读取整个响应将是必要的,这可能在你处理json API响应时会发生:
json.NewDecoder(resp.Body).Decode(&data)
关闭HTTP的连接
- level: intermediate
一些HTTP服务器保持会保持一段时间的网络连接(根据HTTP 1.1的说明和服务器端的“keep-alive”配置)。默认情况下,标准http库只在目标HTTP服务器要求关闭时才会关闭网络连接。这意味着你的应用在某些条件下消耗完sockets/file的描述符。
你可以通过设置请求变量中的 Close
域的值为 true
,来让http库在请求完成时关闭连接。
另一个选项是添加一个 Connection
的请求头,并设置为 close
。目标HTTP服务器应该也会响应一个 Connection: close
的头。当http库看到这个响应头时,它也将会关闭连接。
package main
import (
"fmt"
"net/http"
"io/ioutil"
)
func main() {
req, err := http.NewRequest("GET","http://golang.org",nil)
if err != nil {
fmt.Println(err)
return
}
req.Close = true
//or do this:
//req.Header.Add("Connection", "close")
resp, err := http.DefaultClient.Do(req)
if resp != nil {
defer resp.Body.Close()
}
if err != nil {
fmt.Println(err)
return
}
body, err := ioutil.ReadAll(resp.Body)
if err != nil {
fmt.Println(err)
return
}
fmt.Println(len(string(body)))
}
你也可以取消http的全局连接复用。你将需要为此创建一个自定义的http传输配置。
package main
import (
"fmt"
"net/http"
"io/ioutil"
)
func main() {
tr := &http.Transport{DisableKeepAlives: true}
client := &http.Client{Transport: tr}
resp, err := client.Get("http://golang.org")
if resp != nil {
defer resp.Body.Close()
}
if err != nil {
fmt.Println(err)
return
}
fmt.Println(resp.StatusCode)
body, err := ioutil.ReadAll(resp.Body)
if err != nil {
fmt.Println(err)
return
}
fmt.Println(len(string(body)))
}
如果你向同一个HTTP服务器发送大量的请求,那么把保持网络连接的打开是没问题的。然而,如果你的应用在短时间内向大量不同的HTTP服务器发送一两个请求,那么在引用收到响应后立刻关闭网络连接是一个好主意。增加打开文件的限制数可能也是个好主意。当然,正确的选择源自于应用。
比较Structs, Arrays, Slices, and Maps
- level: intermediate
如果结构体中的各个元素都可以用你可以使用等号来比较的话,那就可以使用相号, ==
,来比较结构体变量。
package main
import "fmt"
type data struct {
num int
fp float32
complex complex64
str string
char rune
yes bool
events <-chan string
handler interface{}
ref *byte
raw [10]byte
}
func main() {
v1 := data{}
v2 := data{}
fmt.Println("v1 == v2:",v1 == v2) //prints: v1 == v2: true
}
如果结构体中的元素无法比较,那使用等号将导致编译错误。注意数组仅在它们的数据元素可比较的情况下才可以比较。
package main
import "fmt"
type data struct {
num int //ok
checks [10]func() bool //not comparable
doit func() bool //not comparable
m map[string] string //not comparable
bytes []byte //not comparable
}
func main() {
v1 := data{}
v2 := data{}
fmt.Println("v1 == v2:",v1 == v2)
}
Go确实提供了一些助手函数,用于比较那些无法使用等号比较的变量。
最常用的方法是使用 reflect
包中的 DeepEqual()
函数。
package main
import (
"fmt"
"reflect"
)
type data struct {
num int //ok
checks [10]func() bool //not comparable
doit func() bool //not comparable
m map[string] string //not comparable
bytes []byte //not comparable
}
func main() {
v1 := data{}
v2 := data{}
fmt.Println("v1 == v2:",reflect.DeepEqual(v1,v2)) //prints: v1 == v2: true
m1 := map[string]string{"one": "a","two": "b"}
m2 := map[string]string{"two": "b", "one": "a"}
fmt.Println("m1 == m2:",reflect.DeepEqual(m1, m2)) //prints: m1 == m2: true
s1 := []int{1, 2, 3}
s2 := []int{1, 2, 3}
fmt.Println("s1 == s2:",reflect.DeepEqual(s1, s2)) //prints: s1 == s2: true
}
除了很慢(这个可能会也可能不会影响你的应用), DeepEqual()
也有其他自身的技巧。
package main
import (
"fmt"
"reflect"
)
func main() {
var b1 []byte = nil
b2 := []byte{}
fmt.Println("b1 == b2:",reflect.DeepEqual(b1, b2)) //prints: b1 == b2: false
}
DeepEqual()
不会认为空的slice与“nil”的slice相等。这个行为与你使用 bytes.Equal()
函数的行为不同。 bytes.Equal()
认为“nil”和空的slice是相等的。
package main
import (
"fmt"
"bytes"
)
func main() {
var b1 []byte = nil
b2 := []byte{}
fmt.Println("b1 == b2:",bytes.Equal(b1, b2)) //prints: b1 == b2: true
}
DeepEqual()
在比较slice时并不总是完美的。
package main
import (
"fmt"
"reflect"
"encoding/json"
)
func main() {
var str string = "one"
var in interface{} = "one"
fmt.Println("str == in:",str == in,reflect.DeepEqual(str, in))
//prints: str == in: true true
v1 := []string{"one","two"}
v2 := []interface{}{"one","two"}
fmt.Println("v1 == v2:",reflect.DeepEqual(v1, v2))
//prints: v1 == v2: false (not ok)
data := map[string]interface{}{
"code": 200,
"value": []string{"one","two"},
}
encoded, _ := json.Marshal(data)
var decoded map[string]interface{}
json.Unmarshal(encoded, &decoded)
fmt.Println("data == decoded:",reflect.DeepEqual(data, decoded))
//prints: data == decoded: false (not ok)
}
如果你的byte slice(或者字符串)中包含文字数据,而当你要不区分大小写形式的值时(在使用 ==
, bytes.Equal()
,或者 bytes.Compare()
),你可能会尝试使用“bytes”和“string”包中的 ToUpper()
或者 ToLower()
函数。对于英语文本,这么做是没问题的,但对于许多其他的语言来说就不行了。这时应该使用 strings.EqualFold()
和 bytes.EqualFold()
。
如果你的byte slice中包含需要验证用户数据的隐私信息(比如,加密哈希、tokens等),不要使用 reflect.DeepEqual()
、 bytes.Equal()
,或者 bytes.Compare()
,因为这些函数将会让你的应用易于被定时攻击。为了避免泄露时间信息,使用 'crypto/subtle'
包中的函数(即, subtle.ConstantTimeCompare()
)。
从Panic中恢复
- level: intermediate
recover()
函数可以用于获取/拦截panic。仅当在一个defer函数中被完成时,调用 recover()
将会完成这个小技巧。
Incorrect:
ackage main
import "fmt"
func main() {
recover() //doesn't do anything
panic("not good")
recover() //won't be executed :)
fmt.Println("ok")
}
Works:
package main
import "fmt"
func main() {
defer func() {
fmt.Println("recovered:",recover())
}()
panic("not good")
}
recover()
的调用仅当它在defer函数中被直接调用时才有效。
Fails:
package main
import "fmt"
func doRecover() {
fmt.Println("recovered =>",recover()) //prints: recovered => <nil>
}
func main() {
defer func() {
doRecover() //panic is not recovered
}()
panic("not good")
}
在Slice, Array, and Map "range"语句中更新引用元素的值
- level: intermediate
在“range”语句中生成的数据的值是真实集合元素的拷贝。它们不是原有元素的引用。这意味着更新这些值将不会修改原来的数据。同时也意味着使用这些值的地址将不会得到原有数据的指针。
package main
import "fmt"
func main() {
data := []int{1,2,3}
for _,v := range data {
v *= 10 //original item is not changed
}
fmt.Println("data:",data) //prints data: [1 2 3]
}
如果你需要更新原有集合中的数据,使用索引操作符来获得数据。
package main
import "fmt"
func main() {
data := []int{1,2,3}
for i,_ := range data {
data[i] *= 10
}
fmt.Println("data:",data) //prints data: [10 20 30]
}
如果你的集合保存的是指针,那规则会稍有不同。如果要更新原有记录指向的数据,你依然需要使用索引操作,但你可以使用 for range
语句中的第二个值来更新存储在目标位置的数据。
package main
import "fmt"
func main() {
data := []*struct{num int} {{1},{2},{3}}
for _,v := range data {
v.num *= 10
}
fmt.Println(data[0],data[1],data[2]) //prints &{10} &{20} &{30}
}
在Slice中"隐藏"数据
- level: intermediate
当你重新划分一个slice时,新的slice将引用原有slice的数组。如果你忘了这个行为的话,在你的应用分配大量临时的slice用于创建新的slice来引用原有数据的一小部分时,会导致难以预期的内存使用。
package main
import "fmt"
func get() []byte {
raw := make([]byte,10000)
fmt.Println(len(raw),cap(raw),&raw[0]) //prints: 10000 10000 <byte_addr_x>
return raw[:3]
}
func main() {
data := get()
fmt.Println(len(data),cap(data),&data[0]) //prints: 3 10000 <byte_addr_x>
}
为了避免这个陷阱,你需要从临时的slice中拷贝数据(而不是重新划分slice)。
package main
import "fmt"
func get() []byte {
raw := make([]byte,10000)
fmt.Println(len(raw),cap(raw),&raw[0]) //prints: 10000 10000 <byte_addr_x>
res := make([]byte,3)
copy(res,raw[:3])
return res
}
func main() {
data := get()
fmt.Println(len(data),cap(data),&data[0]) //prints: 3 3 <byte_addr_y>
}
Slice的数据“毁坏”
- level: intermediate
比如说你需要重新一个路径(在slice中保存)。你通过修改第一个文件夹的名字,然后把名字合并来创建新的路劲,来重新划分指向各个文件夹的路径。
package main
import (
"fmt"
"bytes"
)
func main() {
path := []byte("AAAA/BBBBBBBBB")
sepIndex := bytes.IndexByte(path,'/')
dir1 := path[:sepIndex]
dir2 := path[sepIndex+1:]
fmt.Println("dir1 =>",string(dir1)) //prints: dir1 => AAAA
fmt.Println("dir2 =>",string(dir2)) //prints: dir2 => BBBBBBBBB
dir1 = append(dir1,"suffix"...)
path = bytes.Join([][]byte{dir1,dir2},[]byte{'/'})
fmt.Println("dir1 =>",string(dir1)) //prints: dir1 => AAAAsuffix
fmt.Println("dir2 =>",string(dir2)) //prints: dir2 => uffixBBBB (not ok)
fmt.Println("new path =>",string(path))
}
结果与你想的不一样。与"AAAAsuffix/BBBBBBBBB"相反,你将会得到"AAAAsuffix/uffixBBBB"。这个情况的发生是因为两个文件夹的slice都潜在的引用了同一个原始的路径slice。这意味着原始路径也被修改了。根据你的应用,这也许会是个问题。
通过分配新的slice并拷贝需要的数据,你可以修复这个问题。另一个选择是使用完整的slice表达式。
package main
import (
"fmt"
"bytes"
)
func main() {
path := []byte("AAAA/BBBBBBBBB")
sepIndex := bytes.IndexByte(path,'/')
dir1 := path[:sepIndex:sepIndex] //full slice expression
dir2 := path[sepIndex+1:]
fmt.Println("dir1 =>",string(dir1)) //prints: dir1 => AAAA
fmt.Println("dir2 =>",string(dir2)) //prints: dir2 => BBBBBBBBB
dir1 = append(dir1,"suffix"...)
path = bytes.Join([][]byte{dir1,dir2},[]byte{'/'})
fmt.Println("dir1 =>",string(dir1)) //prints: dir1 => AAAAsuffix
fmt.Println("dir2 =>",string(dir2)) //prints: dir2 => BBBBBBBBB (ok now)
fmt.Println("new path =>",string(path))
}
完整的slice表达式中的额外参数可以控制新的slice的容量。现在在那个slice后添加元素将会触发一个新的buffer分配,而不是覆盖第二个slice中的数据。
"走味的"Slices
- level: intermediate
多个slice可以引用同一个数据。比如,当你从一个已有的slice创建一个新的slice时,这就会发生。如果你的应用功能需要这种行为,那么你将需要关注下“走味的”slice。
在某些情况下,在一个slice中添加新的数据,在原有数组无法保持更多新的数据时,将导致分配一个新的数组。而现在其他的slice还指向老的数组(和老的数据)。
import "fmt"
func main() {
s1 := []int{1,2,3}
fmt.Println(len(s1),cap(s1),s1) //prints 3 3 [1 2 3]
s2 := s1[1:]
fmt.Println(len(s2),cap(s2),s2) //prints 2 2 [2 3]
for i := range s2 { s2[i] += 20 }
//still referencing the same array
fmt.Println(s1) //prints [1 22 23]
fmt.Println(s2) //prints [22 23]
s2 = append(s2,4)
for i := range s2 { s2[i] += 10 }
//s1 is now "stale"
fmt.Println(s1) //prints [1 22 23]
fmt.Println(s2) //prints [32 33 14]
}
类型声明和方法
- level: intermediate
当你通过把一个现有(非interface)的类型定义为一个新的类型时,新的类型不会继承现有类型的方法。
Fails:
package main
import "sync"
type myMutex sync.Mutex
func main() {
var mtx myMutex
mtx.Lock() //error
mtx.Unlock() //error
}
Compile Errors:
/tmp/sandbox106401185/main.go:9: mtx.Lock undefined (type myMutex has no field or method Lock) /tmp/sandbox106401185/main.go:10: mtx.Unlock undefined (type myMutex has no field or method Unlock)
如果你确实需要原有类型的方法,你可以定义一个新的struct类型,用匿名方式把原有类型嵌入其中。
Works:
package main
import "sync"
type myLocker struct {
sync.Mutex
}
func main() {
var lock myLocker
lock.Lock() //ok
lock.Unlock() //ok
}
interface类型的声明也会保留它们的方法集合。
Works:
package main
import "sync"
type myLocker sync.Locker
func main() {
var lock myLocker = new(sync.Mutex)
lock.Lock() //ok
lock.Unlock() //ok
}
从"for switch"和"for select"代码块中跳出
- level: intermediate
没有标签的“break”声明只能从内部的switch/select代码块中跳出来。如果无法使用“return”声明的话,那就为外部循环定义一个标签是另一个好的选择。
package main
import "fmt"
func main() {
loop:
for {
switch {
case true:
fmt.Println("breaking out...")
break loop
}
}
fmt.Println("out!")
}
"goto"声明也可以完成这个功能。。。
"for"声明中的迭代变量和闭包
- level: intermediate
这在Go中是个很常见的技巧。 for
语句中的迭代变量在每次迭代时被重新使用。这就意味着你在 for
循环中创建的闭包(即函数字面量)将会引用同一个变量(而在那些goroutine开始执行时就会得到那个变量的值)。
Incorrect:
package main
import (
"fmt"
"time"
)
func main() {
data := []string{"one","two","three"}
for _,v := range data {
go func() {
fmt.Println(v)
}()
}
time.Sleep(3 * time.Second)
//goroutines print: three, three, three
}
最简单的解决方法(不需要修改goroutine)是,在 for
循环代码块内把当前迭代的变量值保存到一个局部变量中。
Works:
package main
import (
"fmt"
"time"
)
func main() {
data := []string{"one","two","three"}
for _,v := range data {
vcopy := v //
go func() {
fmt.Println(vcopy)
}()
}
time.Sleep(3 * time.Second)
//goroutines print: one, two, three
}
另一个解决方法是把当前的迭代变量作为匿名goroutine的参数。
Works:
package main
import (
"fmt"
"time"
)
func main() {
data := []string{"one","two","three"}
for _,v := range data {
go func(in string) {
fmt.Println(in)
}(v)
}
time.Sleep(3 * time.Second)
//goroutines print: one, two, three
}
下面这个陷阱稍微复杂一些的版本。
Incorrect:
package main
import (
"fmt"
"time"
)
type field struct {
name string
}
func (p *field) print() {
fmt.Println(p.name)
}
func main() {
data := []field{{"one"},{"two"},{"three"}}
for _,v := range data {
go v.print()
}
time.Sleep(3 * time.Second)
//goroutines print: three, three, three
}
Works:
package main
import (
"fmt"
"time"
)
type field struct {
name string
}
func (p *field) print() {
fmt.Println(p.name)
}
func main() {
data := []field{{"one"},{"two"},{"three"}}
for _,v := range data {
v := v
go v.print()
}
time.Sleep(3 * time.Second)
//goroutines print: one, two, three
}
在运行这段代码时你认为会看到什么结果?(原因是什么?)
package main
import (
"fmt"
"time"
)
type field struct {
name string
}
func (p *field) print() {
fmt.Println(p.name)
}
func main() {
data := []*field{{"one"},{"two"},{"three"}}
for _,v := range data {
go v.print()
}
time.Sleep(3 * time.Second)
}
Defer函数调用参数的求值
- level: intermediate
被defer的函数的参数会在defer声明时求值(而不是在函数实际执行时)。
Arguments for a deferred function call are evaluated when the defer
statement is evaluated (not when the function is actually executing).
package main
import "fmt"
func main() {
var i int = 1
defer fmt.Println("result =>",func() int { return i * 2 }())
i++
//prints: result => 2 (not ok if you expected 4)
}
被Defer的函数调用执行
- level: intermediate
被defer的调用会在包含的函数的末尾执行,而不是包含代码块的末尾。对于Go新手而言,一个很常犯的错误就是无法区分被defer的代码执行规则和变量作用规则。如果你有一个长时运行的函数,而函数内有一个 for
循环试图在每次迭代时都 defer
资源清理调用,那就会出现问题。
package main
import (
"fmt"
"os"
"path/filepath"
)
func main() {
if len(os.Args) != 2 {
os.Exit(-1)
}
start, err := os.Stat(os.Args[1])
if err != nil || !start.IsDir(){
os.Exit(-1)
}
var targets []string
filepath.Walk(os.Args[1], func(fpath string, fi os.FileInfo, err error) error {
if err != nil {
return err
}
if !fi.Mode().IsRegular() {
return nil
}
targets = append(targets,fpath)
return nil
})
for _,target := range targets {
f, err := os.Open(target)
if err != nil {
fmt.Println("bad target:",target,"error:",err) //prints error: too many open files
break
}
defer f.Close() //will not be closed at the end of this code block
//do something with the file...
}
}
解决这个问题的一个方法是把代码块写成一个函数。
package main
import (
"fmt"
"os"
"path/filepath"
)
func main() {
if len(os.Args) != 2 {
os.Exit(-1)
}
start, err := os.Stat(os.Args[1])
if err != nil || !start.IsDir(){
os.Exit(-1)
}
var targets []string
filepath.Walk(os.Args[1], func(fpath string, fi os.FileInfo, err error) error {
if err != nil {
return err
}
if !fi.Mode().IsRegular() {
return nil
}
targets = append(targets,fpath)
return nil
})
for _,target := range targets {
func() {
f, err := os.Open(target)
if err != nil {
fmt.Println("bad target:",target,"error:",err)
return
}
defer f.Close() //ok
//do something with the file...
}()
}
}
另一个方法是去掉 defer
语句 :-)
失败的类型断言
- level: intermediate
失败的类型断言返回断言声明中使用的目标类型的“零值”。这在与隐藏变量混合时,会发生未知情况。
Incorrect:
package main
import "fmt"
func main() {
var data interface{} = "great"
if data, ok := data.(int); ok {
fmt.Println("[is an int] value =>",data)
} else {
fmt.Println("[not an int] value =>",data)
//prints: [not an int] value => 0 (not "great")
}
}
Works:
package main
import "fmt"
func main() {
var data interface{} = "great"
if res, ok := data.(int); ok {
fmt.Println("[is an int] value =>",res)
} else {
fmt.Println("[not an int] value =>",data)
//prints: [not an int] value => great (as expected)
}
}
阻塞的Goroutine和资源泄露
- level: intermediate
Rob Pike在2012年的Google I/O大会上所做的“Go Concurrency Patterns”的演讲上,说道过几种基础的并发模式。从一组目标中获取第一个结果就是其中之一。
func First(query string, replicas ...Search) Result {
c := make(chan Result)
searchReplica := func(i int) { c <- replicas[i](query) }
for i := range replicas {
go searchReplica(i)
}
return <-c
}
这个函数在每次搜索重复时都会起一个goroutine。每个goroutine把它的搜索结果发送到结果的channel中。结果channel的第一个值被返回。
那其他goroutine的结果会怎样呢?还有那些goroutine自身呢?
在 First()
函数中的结果channel是没缓存的。这意味着只有第一个goroutine返回。其他的goroutine会困在尝试发送结果的过程中。这意味着,如果你有不止一个的重复时,每个调用将会泄露资源。
为了避免泄露,你需要确保所有的goroutine退出。一个不错的方法是使用一个有足够保存所有缓存结果的channel。
func First(query string, replicas ...Search) Result {
c := make(chan Result,len(replicas))
searchReplica := func(i int) { c <- replicas[i](query) }
for i := range replicas {
go searchReplica(i)
}
return <-c
}
另一个不错的解决方法是使用一个有 default
情况的 select
语句和一个保存一个缓存结果的channel。 default
情况保证了即使当结果channel无法收到消息的情况下,goroutine也不会堵塞。
func First(query string, replicas ...Search) Result {
c := make(chan Result,1)
searchReplica := func(i int) {
select {
case c <- replicas[i](query):
default:
}
}
for i := range replicas {
go searchReplica(i)
}
return <-c
}
你也可以使用特殊的取消channel来终止workers。
func First(query string, replicas ...Search) Result {
c := make(chan Result)
done := make(chan struct{})
defer close(done)
searchReplica := func(i int) {
select {
case c <- replicas[i](query):
case <- done:
}
}
for i := range replicas {
go searchReplica(i)
}
return <-c
}
为何在演讲中会包含这些bug?Rob Pike仅仅是不想把演示复杂化。这么作是合理的,但对于Go新手而言,可能会直接使用代码,而不去思考它可能有问题。
高级篇
使用指针接收方法的值的实例
- level: advanced
只要值是可取址的,那在这个值上调用指针接收方法是没问题的。换句话说,在某些情况下,你不需要在有一个接收值的方法版本。
然而并不是所有的变量是可取址的。Map的元素就不是。通过interface引用的变量也不是。
package main
import "fmt"
type data struct {
name string
}
func (p *data) print() {
fmt.Println("name:",p.name)
}
type printer interface {
print()
}
func main() {
d1 := data{"one"}
d1.print() //ok
var in printer = data{"two"} //error
in.print()
m := map[string]data {"x":data{"three"}}
m["x"].print() //error
}
Compile Errors:
/tmp/sandbox017696142/main.go:21: cannot use data literal (type data) as type printer in assignment: data does not implement printer (print method has pointer receiver)
/tmp/sandbox017696142/main.go:25: cannot call pointer method on m["x"] /tmp/sandbox017696142/main.go:25: cannot take the address of m["x"]
更新Map的值
- level: advanced
如果你有一个struct值的map,你无法更新单个的struct值。
Fails:
package main
type data struct {
name string
}
func main() {
m := map[string]data {"x":{"one"}}
m["x"].name = "two" //error
}
Compile Error:
/tmp/sandbox380452744/main.go:9: cannot assign to m["x"].name
这个操作无效是因为map元素是无法取址的。
而让Go新手更加困惑的是slice元素是可以取址的。
package main
import "fmt"
type data struct {
name string
}
func main() {
s := []data {{"one"}}
s[0].name = "two" //ok
fmt.Println(s) //prints: [{two}]
}
注意在不久之前,使用编译器之一(gccgo)是可以更新map的元素值的,但这一行为很快就被修复了 :-)它也被认为是Go 1.3的潜在特性。在那时还不是要急需支持的,但依旧在todo list中。
第一个有效的方法是使用一个临时变量。
package main
import "fmt"
type data struct {
name string
}
func main() {
m := map[string]data {"x":{"one"}}
r := m["x"]
r.name = "two"
m["x"] = r
fmt.Printf("%v",m) //prints: map[x:{two}]
}
另一个有效的方法是使用指针的map。
package main
import "fmt"
type data struct {
name string
}
func main() {
m := map[string]*data {"x":{"one"}}
m["x"].name = "two" //ok
fmt.Println(m["x"]) //prints: &{two}
}
顺便说下,当你运行下面的代码时会发生什么?
package main
type data struct {
name string
}
func main() {
m := map[string]*data {"x":{"one"}}
m["z"].name = "what?" //???
}
"nil" Interfaces和"nil" Interfaces的值
- level: advanced
这在Go中是第二最常见的技巧,因为interface虽然看起来像指针,但并不是指针。interface变量仅在类型和值为“nil”时才为“nil”。
interface的类型和值会根据用于创建对应interface变量的类型和值的变化而变化。当你检查一个interface变量是否等于“nil”时,这就会导致未预期的行为。
package main
import "fmt"
func main() {
var data *byte
var in interface{}
fmt.Println(data,data == nil) //prints: <nil> true
fmt.Println(in,in == nil) //prints: <nil> true
in = data
fmt.Println(in,in == nil) //prints: <nil> false
//'data' is 'nil', but 'in' is not 'nil'
}
当你的函数返回interface时,小心这个陷阱。
Incorrect:
package main
import "fmt"
func main() {
doit := func(arg int) interface{} {
var result *struct{} = nil
if(arg > 0) {
result = &struct{}{}
}
return result
}
if res := doit(-1); res != nil {
fmt.Println("good result:",res) //prints: good result: <nil>
//'res' is not 'nil', but its value is 'nil'
}
}
Works:
package main
import "fmt"
func main() {
doit := func(arg int) interface{} {
var result *struct{} = nil
if(arg > 0) {
result = &struct{}{}
} else {
return nil //return an explicit 'nil'
}
return result
}
if res := doit(-1); res != nil {
fmt.Println("good result:",res)
} else {
fmt.Println("bad result (res is nil)") //here as expected
}
}
栈和堆变量
- level: advanced
你并不总是知道变量是分配到栈还是堆上。在C++中,使用 new
创建的变量总是在堆上。在Go中,即使是使用 new()
或者 make()
函数来分配,变量的位置还是由编译器决定。编译器根据变量的大小和“泄露分析”的结果来决定其位置。这也意味着在局部变量上返回引用是没问题的,而这在C或者C++这样的语言中是不行的。
如果你想知道变量分配的位置,在“go build”或“go run”上传入“-m“ gc标志(即, go run -gcflags -m app.go
)。
GOMAXPROCS, 并发, 和并行
- level: advanced
默认情况下,Go仅使用一个执行上下文/OS线程(在当前的版本)。这个数量可以通过设置 GOMAXPROCS
来提高。
一个常见的误解是, GOMAXPROCS
表示了CPU的数量,Go将使用这个数量来运行goroutine。而 runtime.GOMAXPROCS()
函数的文档让人更加的迷茫。 GOMAXPROCS
变量描述(https://golang.org/pkg/runtime/)所讨论OS线程的内容比较好。
你可以设置 GOMAXPROCS
的数量大于CPU的数量。 GOMAXPROCS
的最大值是256。
package main
import (
"fmt"
"runtime"
)
func main() {
fmt.Println(runtime.GOMAXPROCS(-1)) //prints: 1
fmt.Println(runtime.NumCPU()) //prints: 1 (on play.golang.org)
runtime.GOMAXPROCS(20)
fmt.Println(runtime.GOMAXPROCS(-1)) //prints: 20
runtime.GOMAXPROCS(300)
fmt.Println(runtime.GOMAXPROCS(-1)) //prints: 256
}
读写操作的重排顺序
- level: advanced
Go可能会对某些操作进行重新排序,但它能保证在一个goroutine内的所有行为顺序是不变的。然而,它并不保证多goroutine的执行顺序。
package main
import (
"runtime"
"time"
)
var _ = runtime.GOMAXPROCS(3)
var a, b int
func u1() {
a = 1
b = 2
}
func u2() {
a = 3
b = 4
}
func p() {
println(a)
println(b)
}
func main() {
go u1()
go u2()
go p()
time.Sleep(1 * time.Second)
}
如果你多运行几次上面的代码,你可能会发现 a
和 b
变量有多个不同的组合:
1
2
3
4
0
2
0
0
1
4
a
和 b
最有趣的组合式是 "02"
。这表明 b
在 a
之前更新了。
如果你需要在多goroutine内放置读写顺序的变化,你将需要使用channel,或者使用"sync"包构建合适的结构体。
优先调度
- level: advanced
有可能会出现这种情况,一个无耻的goroutine阻止其他goroutine运行。当你有一个不让调度器运行的 for
循环时,这就会发生。
package main
import "fmt"
func main() {
done := false
go func(){
done = true
}()
for !done {
}
fmt.Println("done!")
}
for
循环并不需要是空的。只要它包含了不会触发调度执行的代码,就会发生这种问题。
调度器会在GC、“go”声明、阻塞channel操作、阻塞系统调用和lock操作后运行。它也会在非内联函数调用后执行。
package main
import "fmt"
func main() {
done := false
go func(){
done = true
}()
for !done {
fmt.Println("not done!") //not inlined
}
fmt.Println("done!")
}
要想知道你在 for
循环中调用的函数是否是内联的,你可以在“go build”或“go run”时传入“-m” gc标志(如, go build -gcflags -m
)。
另一个选择是显式的唤起调度器。你可以使用“runtime”包中的 Goshed()
函数。
package main
import (
"fmt"
"runtime"
)
func main() {
done := false
go func(){
done = true
}()
for !done {
runtime.Gosched()
}
fmt.Println("done!")
}