Leetcode: Count of Range Sum
Given an integer array nums, return the number of range sums that lie in [lower, upper] inclusive. Range sum S(i, j) is defined as the sum of the elements in nums between indices i and j (i ≤ j), inclusive. Note: A naive algorithm of O(n2) is trivial. You MUST do better than that. Example: Given nums = [-2, 5, -1], lower = -2, upper = 2, Return 3. The three ranges are : [0, 0], [2, 2], [0, 2] and their respective sums are: -2, -1, 2.
参考:https://leetcode.com/discuss/79083/share-my-solution
First of all, let's look at the naive solution. Preprocess to calculate the prefix sums S[i]
= S(0, i)
, then S(i, j)
= S[j] - S[i]
. With these prefix sums, it is trivial to see that with O(n^2)
time we can find all S(i, j)
in the range [lower, upper]
Java - Naive Solution(这个做法为了让所有区间都能表示成一个区间减另一个区间,size额外增加了1,sums[i]定义为前i个元素之和,这样连只包含第一个元素的区间的和都可以表示为sums[1]-sums[0],这样写不用再分类讨论,挺好的)
public int countRangeSum(int[] nums, int lower, int upper) {
int n = nums.length;
long[] sums = new long[n + 1];
for (int i = 0; i < n; ++i)
sums[i + 1] = sums[i] + nums[i];
int ans = 0;
for (int i = 0; i < n; ++i)
for (int j = i + 1; j <= n; ++j)
if (sums[j] - sums[i] >= lower && sums[j] - sums[i] <= upper)
ans++;
return ans;
}
However the naive solution is set to TLE intentionally
Now let's do better than this.
Recall count smaller number after self where we encountered the problem
count[i]
= count ofnums[j]
-nums[i]
<0
withj
>i
Here, after we did the preprocess, we need to solve the problem
count[i]
= count ofa
<=S[j]
-S[i]
<=b
withj
>i
ans
= sum(count[:])
Therefore the two problems are almost the same. We can use the same technique used in that problem to solve this problem. One solution is merge sort based; another one is Balanced BST based. The time complexity are both O(n log n)
.
The merge sort based solution counts the answer while doing the merge. During the merge stage, we have already sorted the left half [start, mid)
and right half [mid, end)
. We then iterate through the left half with index i
. For each i
, we need to find two indices k
and j
in the right half where
j
is the first index satisfysums[j] - sums[i] > upper
andk
is the first index satisfysums[k] - sums[i] >= lower
.
Then the number of sums in [lower, upper]
is j-k
. We also use another index t
to copy the elements satisfy sums[t] < sums[i]
to a cache in order to complete the merge sort.
Despite the nested loops, the time complexity of the "merge & count" stage is still linear. Because the indices k
, j
, t
will only increase but not decrease, each of them will only traversal the right half once at most. The total time complexity of this divide and conquer solution is then O(n log n)
.
One other concern is that the sums
may overflow integer. So we use long instead.
方法一:mergesort, O(NlogN) running time 最快但是不喜欢这种写法,不理解11行
1 public class Solution { 2 public int countRangeSum(int[] nums, int lower, int upper) { 3 int n = nums.length; 4 long[] sums = new long[n + 1]; 5 for (int i = 0; i < n; ++i) 6 sums[i + 1] = sums[i] + nums[i]; 7 return countWhileMergeSort(sums, 0, n + 1, lower, upper); 8 } 9 10 private int countWhileMergeSort(long[] sums, int start, int end, int lower, int upper) { 11 if (end - start <= 1) return 0; 12 int mid = (start + end) / 2; 13 int count = countWhileMergeSort(sums, start, mid, lower, upper) 14 + countWhileMergeSort(sums, mid, end, lower, upper); 15 int j = mid, k = mid, t = mid, r = 0; 16 long[] cache = new long[end - start]; 17 for (int i = start; i < mid; ++i, ++r) { 18 while (k < end && sums[k] - sums[i] < lower) k++; 19 while (j < end && sums[j] - sums[i] <= upper) j++; 20 while (t < end && sums[t] < sums[i]) cache[r++] = sums[t++]; //start merging 21 cache[r] = sums[i]; 22 count += j - k; 23 } 24 System.arraycopy(cache, 0, sums, start, r); 25 return count; 26 } 27 }
默认方法:construct BST (好理解很多) , Time: O(NlogN)
这个做法是建立BST,把prefix sum作为TreeNode.val存进去,为了避免重复的TreeNode.val处理麻烦,设置一个count记录多少个重复TreeNode.val, 维护leftSize, 记录比该节点value小的节点个数,rightSize同理
由于RangeSum S(i,j)在[lower,upper]之间的条件是lower<=sums[j+1]-sums[i]<=upper, 所以我们每次insert一个新的PrefixSum sums[k]进这个BST之前,先寻找一下(rangeSize)该BST内已经有多少个PrefixSum(叫它sums[t]吧)满足lower<=sums[k]-sums[t]<=upper, 即寻找有多少个sums[t]满足:
sums[k]-upper<=sums[t]<=sums[k]-lower
BST提供了countSmaller和countLarger的功能,计算比sums[k]-upper小的RangeSum数目和比sums[k]-lower大的数目,再从总数里面减去,就是所求
1 public class Solution { 2 private class TreeNode { 3 long val = 0; 4 int count = 1; 5 int leftSize = 0; 6 int rightSize = 0; 7 TreeNode left = null; 8 TreeNode right = null; 9 public TreeNode(long v) { 10 this.val = v; 11 this.count = 1; 12 this.leftSize = 0; 13 this.rightSize = 0; 14 } 15 } 16 17 private TreeNode insert(TreeNode root, long val) { 18 if(root == null) { 19 return new TreeNode(val); 20 } else if(root.val == val) { 21 root.count++; 22 } else if(val < root.val) { 23 root.leftSize++; 24 root.left = insert(root.left, val); 25 } else if(val > root.val) { 26 root.rightSize++; 27 root.right = insert(root.right, val); 28 } 29 return root; 30 } 31 32 private int countSmaller(TreeNode root, long val) { 33 if(root == null) { 34 return 0; 35 } else if(root.val == val) { 36 return root.leftSize; 37 } else if(root.val > val) { 38 return countSmaller(root.left, val); 39 } else { 40 return root.leftSize + root.count + countSmaller(root.right, val); 41 } 42 } 43 44 private int countLarger(TreeNode root, long val) { 45 if(root == null) { 46 return 0; 47 } else if(root.val == val) { 48 return root.rightSize; 49 } else if(root.val < val) { 50 return countLarger(root.right, val); 51 } else { 52 return countLarger(root.left, val) + root.count + root.rightSize; 53 } 54 } 55 56 private int rangeSize(TreeNode root, long lower, long upper) { 57 int total = root.count + root.leftSize + root.rightSize; 58 int smaller = countSmaller(root, lower); // Exclude everything smaller than lower 59 int larger = countLarger(root, upper); // Exclude everything larger than upper 60 return total - smaller - larger; 61 } 62 63 public int countRangeSum(int[] nums, int lower, int upper) { 64 if(nums.length == 0) { 65 return 0; 66 } 67 long[] sums = new long[nums.length + 1]; 68 for(int i = 0; i < nums.length; i++) { 69 sums[i + 1] = sums[i] + nums[i]; 70 } 71 TreeNode root = new TreeNode(sums[0]); 72 int output = 0; 73 for(int i = 1; i < sums.length; i++) { 74 output += rangeSize(root, sums[i] - upper, sums[i] - lower); 75 insert(root, sums[i]); 76 } 77 return output; 78 } 79 }