容斥原理

容斥原理

 

对容斥原理的描述

 

容斥原理是一种重要的组合数学方法,可以让你求解任意大小的集合,或者计算复合事件的概率。

 

描述

 

       容斥原理可以描述如下:

 

         要计算几个集合并集的大小,我们要先将所有单个集合的大小计算出来,然后减去所有两个集合相交的部分,再加回所有三个集合相交的部分,再减去所有四个集合相交的部分,依此类推,一直计算到所有集合相交的部分。

 

关于集合的原理公式

 

      

 

上述描述的公式形式可以表示如下:

 

       

 

 

 

 

 

        

 

 

 

 

 

      它可以写得更简洁一些,我们将B作为所有Ai的集合,那么容斥原理就变成了:

 

 

 

        

 

 

 

         这个公式是由 De Moivre (Abraham de Moivre)提出的。

 

 

 

关于维恩图的原理

 

 

 

       用维恩图来表示集合ABC

 

 

 

       

 

 

 

         那么的面积就是集合ABC各自面积之和减去  的面积,再加上的面积。

 

 

 

 

 


 

 

 

         由此,我们也可以解决n个集合求并的问题。

 

 

 

关于概率论的原理

 

 

 

       设事件 代表发生某些事件的概率(即发生其中至少一个事件的概率),则:

 

 

 

  

 

 

 

         这个公式也可以用B代表Ai的集合:

 

 

 

 

 


 

 

 

容斥原理的证明

 

 

 

       我们要证明下面的等式:

 

 

 

       

 

 

 

         其中B代表全部Ai的集合

 

 

 

         我们需要证明在Ai集合中的任意元素,都由右边的算式被正好加上了一次(注意如果是不在Ai集合中的元素,是不会出现在右边的算式中的)。

 

 

 

         假设有一任意元素在kAi集合中(k>=1),我们来验证这个元素正好被加了一次:

 

 

 

         size(C)=1时,元素x被加了k次。

 

 

 

         size(C)=2时,元素x被减了C(2,k)次,因为在k个集合中选择2个,其中都包含x

 

 

 

         size(C)=3时,元素x被加了C(3,k)次。

 

 

 

         ……

 

 

 

         size(C)=k时,元素x被加/减了C(k,k)次,符号由sign(-1)^(k-1)决定。

 

 

 

         size(C)>k时,元素x不被考虑。

 

 

 

         然后我们来计算所有组合数的和。

 

 

 

         

 

 

 

         由二项式定理,我们可以将它变成

 

 

 

 

 

    

 

 

 

 

 

         我们把x取为1,这时表示1-T(其中Tx被加的总次数),所以,证明完毕。

 

 

 

对于实际问题的应用

 

 

 

       容斥原理的理论需要通过例子才能很好的理解。

 

 

 

         首先,我们用三个简单的例子来阐释这个理论。然后会讨论一些复杂问题,试看如何用容斥原理来解决它们。

 

 

 

         其中的“寻找路径数”是一个特殊的例子,它反映了容斥问题有时可以在多项式级复杂度内解决,不一定需要指数级。

 

 

 

一个简单的排列问题

 

 

 

       09的数字组成排列,要求第一个数大于1,最后一个数小于8,一共有多少种排列?

 

 

 

         我们可以来计算它的逆问题,即第一个元素<=1或者最后一个元素>=8的情况。

 

 

 

         我们设第一个元素<=1时有X组排列,最后一个元素>=8时有Y组排列。那么通过容斥原理来解决就可以写成:

 

 

 

       

 

 

 

         经过简单的组合运算,我们得到了结果:

 

 

 

         

 

 

 

         然后被总的排列数10!减,就是最终的答案了。

 

 

 

(0,1,2)序列问题

 

 

 

       长度为n的由数字012组成的序列,要求每个数字至少出现1次,这样的序列有多少种?

 

 

 

         同样的,我们转向它的逆问题。也就是不出现这些数字的序列 不出现其中某些数字的序列。

 

 

 

         我们定义Ai(i=0…2)表示不出现数字i的序列数,那么由容斥原理,我们得到该逆问题的结果为:

 

 

 

 

 


 

 

 

           可以发现每个Ai的值都为2^n(因为这些序列中只能包含两种数字)。而所有的两两组合1(它们只包含1种数字)。最后,三个集合的交集为0。(因为它不包含数字,所以不存在)

 

 

 

        要记得我们解决的是它的逆问题,所以要用总数减掉,得到最终结果:

 

 

 

         

 

 

 

方程整数解问题

 

 

 

       给出一个方程:

 

 

 

       

 

 

 

         其中

 

 

 

         求这个方程的整数解有多少组。

 

 

 

         我们先不去理会xi<=8的条件,来考虑所有正整数解的情况。这个很容易用组合数来求解,我们要把20个元素分成6组,也就是添加5块“夹板”,然后在25个位置中找5块“夹板”的位置。

 

 

 

         

 

 

 

         然后通过容斥原理来讨论它的逆问题,也就是x>=9时的解。

 

 

 

         我们定义Akxk>=9并且其他xi>=0时的集合,同样我们用上面的添加“夹板”法来计算Ak的大小,因为有9个位置已经被xk所利用了,所以:

 

 

 

         

 

 

 

         然后计算两个这样的集合AkAp的交集:

 

 

 

         

 

 

 

         因为所有x的和不能超过20,所以三个或三个以上这样的集合时是不能同时出现的,它们的交集都为0。最后我们用总数剪掉用容斥原理所求逆问题的答案,就得到了最终结果:

 

 

 

         

 

 

 

求指定区间内与n互素的数的个数:

 

 

 

       给出整数nr。求区间[1;r]中与n互素的数的个数。

 

 

 

         去解决它的逆问题,求不与n互素的数的个数。

 

 

 

         考虑n的所有素因子pi(i=1…k)

 

 

 

         [1;r]中有多少数能被pi整除呢?它就是:

 

 

 

       

 

 

 

         然而,如果我们单纯将所有结果相加,会得到错误答案。有些数可能被统计多次(被好几个素因子整除)。所以,我们要运用容斥原理来解决。

 

 

 

         我们可以用2^k的算法求出所有的pi组合,然后计算每种组合的pi乘积,通过容斥原理来对结果进行加减处理。

 

 

 

         关于此问题的最终实现:

 

 1 int solve (int n, int r) {
 2         vector<int> p;
 3         for (int i=2; i*i<=n; ++i)
 4                if (n % i == 0) {
 5                        p.push_back (i);
 6                        while (n % i == 0)
 7                                n /= i;
 8                }
 9         if (n > 1)
10                p.push_back (n);
11         int sum = 0;
12         for (int msk=1; msk<(1<<p.size()); ++msk) {
13                int mult = 1,
14                        bits = 0;
15                for (int i=0; i<(int)p.size(); ++i)
16                        if (msk & (1<<i)) {
17                                ++bits;
18                                mult *= p[i];
19                        }
20                int cur = r / mult;
21                if (bits % 2 == 1)
22                        sum += cur;
23                else
24                        sum -= cur;
25         }
26         return r - sum;
27 
28 }

算法的复杂度为 

求在给定区间内,能被给定集合至少一个数整除的数个数

       给出n个整数ai和整数r。求在区间[1;r]中,至少能被一个ai整除的数有多少。

         解决此题的思路和上题差不多,计算ai所能组成的各种集合(这里将集合中ai的最小公倍数作为除数)在区间中满足的数的个数,然后利用容斥原理实现加减。

         此题中实现所有集合的枚举,需要2^n的复杂度,求解lcm需要O(nlogr)的复杂度。

能满足一定数目匹配的字符串的个数问题

       给出n个匹配串,它们长度相同,其中有一些’?’表示待匹配的字母。然后给出一个整数k,求能正好匹配k个匹配串的字符串的个数。更进一步,求至少匹配k个匹配串的字符串的个数。

         首先我们会发现,我们很容易找到能匹配所有匹配串的字符串。只需要对比所有匹配串,去在每一列中找出现的字母(或者这一列全是’?’,或者这一列出现了唯一的字母,否则这样的字符串就存在),最后所有字母组成的单词即为所求。

         现在我们来学习如何解决第一个问题:能正好匹配k个匹配串的字符串。

         我们在n个匹配串中选出k个,作为集合X,统计满足集合X中匹配的字符串数。求解这个问题时应用容斥原理,对X的所有超集进行运算,得到每个X集合的结果:

       

         此处f(Y)代表满足匹配集合Y的字符串数。

         如果我们将所有的ans(X)相加,就可以得到最终结果:

         

         这样,就得到了一个复杂度的解法。

         这个算法可以作一些改进,因为在求解ans(X)时有些Y集合是重复的。

         回到利用容斥原理公式可以发现,当选定一个Y时,所有 X的结果都是相同的,其符号都为。所以可以用如下公式求解:

         

         这样就得到了一个复杂度的解法。

         现在我们来求解第二个问题:能满足至少k个匹配的字符串有多少个。

         显然的,我们可以用问题一的方法来计算满足kn的所有结果。问题一的结论依然成立,不同之处在于这个问题中的X不是大小都为k的,而是>=k的所有集合。

         如此进行计算,最后将f(Y)作为另一个因子:将所有的ans做和,有点类似二项式展开:

 


 

在《具体数学》Graham, Knuth, Patashnik. "Concrete Mathematics" [1998] )中,介绍了一个著名的关于二项式系数的公式:

 

 


 

根据这个公式,可以将前面的结果进行化简:

 

 


 

那么,对于这个问题,我们也得到了一个的解法:

 

 


 

路径的数目问题

 

       在一个方格阵中,有k个格子是不可穿越的墙。一开始在格子(1,1)(最左下角的格子)中有一个机器人。这个机器人只能向上或向右行进,最后它将到达位于格子(n,m)的笼子里,其间不能经过障碍物格子。求一共有多少种路线可以到达终点。

 

         为了方便区分所有障碍物格子,我们建立坐标系,用(x,y)表示格子的坐标。

 

         首先我们考虑没有障碍物的时候:也就是如何求从一个点到另一个点的路径数。如果从一个点在一个方向要走x个格子,在另一个方向要走y个格子,那么通过简单的组合原理可以得知结果为:

 

         

 

         现在来考虑有障碍物时的情况,我们可以利用容斥原理:求出至少经过一个障碍物时的路径数。

 

         对于这个例子,你可以枚举所有障碍物的子集,作为需要要经过的,计算经过该集合障碍物的路径数(求从原点到第一个障碍物的路径数、第一个障碍物到第二个障碍物的路径数最后对这些路径数求乘积),然后通过容斥原理,对这些结果作加法或减法。

 

         然而,它是一个非多项式的解法,复杂度。下面我们将介绍一个多项式的解法

 

        

我们运用动态规划:令d[i][j]代表从第i个点到第j个点,不经过任何障碍物时的路径数(当然除了ij)。那么我们总共需要k+2个点,包括k个障碍物点以及起点和终点。

 

 

         首先我们算出从i点到j点的所有路径数,然后减掉经过障碍物的那些“坏”的路线。让我们看看如何计算“坏”的路线:枚举ij之间的所有障碍物点i<l<j,那么从ij的“坏”路径数就是所有d[i][l]d[l][j]的乘积最后求和。再被总路径数减掉就是d[i][j]的结果。

 

 

         我们已经知道计算总路径数的复杂度为 ,那么该解法的总复杂度为 

 

         (译注:这段算法有问题,事实上可以用O(k^2)方法解决

 

 素数四元组的个数问题

 

       给出n个数,从其中选出4个数,使它们的最大公约数为1,问总共有多少中取法。

 

         我们解决它的逆问题:求最大公约数d>1的四元组的个数。

 

         运用容斥原理,将求得的对于每个d的四元组个数的结果进行加减。

 

         

 

         其中deg(d)代表d的质因子个数,f(d)代表四个数都能被d整除的四元组的个数。

 

         求解f(d)时,只需要利用组合方法,求从所有满足被d整除的ai中选4个的方法数。

 

         然后利用容斥原理,统计出所有能被一个素数整除的四元组个数,然后减掉所有能被两个素数整除的四元组个数,再加上被三个素数整除的四元组个数

 

和睦数三元组的个数问题

 

       给出一个整数 。选出a, b, c (其中2<=a<b<c<=n),组成和睦三元组,即:

 

         · 或者满足 ,  , 

 

· 或者满足

 

首先,我们考虑它的逆问题:也就是不和睦三元组的个数。

 

然后,我们可以发现,在每个不和睦三元组的三个元素中,我们都能找到正好两个元素满足:它与一个元素互素,并且与另一个元素不互素。

 

所以,我们只需枚举2n的所有数,将每个数的与其互素的数的个数和与其不互素的数的个数相乘,最后求和并除以2,就是要求的逆问题的答案。

 

现在我们要考虑这个问题,如何求与2n这些数互素(不互素)的数的个数。虽然求解与一个数互素数的个数的解法在前面已经提到过了,但在此并不合适,因为现在要求2n所有数的结果,分别求解显然效率太低。

 

所以,我们需要一个更快的算法,可以一次算出2n所有数的结果。

 

在这里,我们可以使用改进的埃拉托色尼筛法

 

· 首先,对于2n的所有数,我们要知道构成它的素数中是否有次数大于1的,为了应用容斥原理,我们还有知道它们由多少种不同的素数构成。

 

对于这个问题,我们定义数组deg[i]:表示i由多少种不同素数构成,以及good[i]:取值truefalse,表示i包含素数的次数小于等于1是否成立。

 

再利用埃拉托色尼筛法,在遍历到某个素数i时,枚举它在2n范围内的所有倍数,更新这些倍数的deg[]值,如果有倍数包含了多个i,那么就把这个倍数的good[]值赋为false

 

· 然后,利用容斥原理,求出2n每个数的cnt[i]:在2n中不与i互素的数的个数。

 

回想容斥原理的公式,它所求的集合是不会包含重复元素的。也就是如果这个集合包含的某个素数多于一次,它们不应再被考虑。

 

所以只有当一个数i满足good[i]=true时,它才会被用于容斥原理。枚举i的所有倍数i*j,那么对于i*j,就有N/i个与i*j同样包含i(素数集合)的数。将这些结果进行加减,符号由deg[i](素数集合的大小)决定。如果deg[i]为奇数,那么我们要用加号,否则用减号。

 

程序实现:

 

 1 int n;
 2 bool good[MAXN];
 3 int deg[MAXN], cnt[MAXN];
 4 long long solve() {
 5          memset (good, 1, sizeof good);
 6          memset (deg, 0, sizeof deg);
 7          memset (cnt, 0, sizeof cnt);
 8          long long ans_bad = 0;
 9          for (int i=2; i<=n; ++i) {
10                  if (good[i]) {
11                           if (deg[i] == 0) deg[i] = 1;
12                           for (int j=1; i*j<=n; ++j) {
13                                    if (j > 1 && deg[i] == 1)
14                                             if (j % i == 0)
15                                                     good[i*j] = false;
16                                             else
17                                                     ++deg[i*j];
18                                    cnt[i*j] += (n / i) * (deg[i]%2==1 ? +1 : -1);
19                           }
20                  }
21                  ans_bad += (cnt[i] - 1) * 1ll * (n - cnt[i] - 1);
22          }
23          return (n-1) * 1ll * (n-2) * (n-3) / 6 - ans_bad / 2;
24 }

最终算法的复杂度为 ,因为对于大部分i都要进行n/i次枚举。

错排问题

       我们想要证明如下的求解长度为n序列的错排数的公式:

      

         它的近似结果为:

         

         (此外,如果将这个近似式的结果向其最近的整数舍入,你就可以得到准确结果)

         我们定义Ak:在长度为n的序列中,有一个不动点位置为k(1<=k<=n)时的序列集合。

         现在我们运用容斥原理来计算至少包含有一个不动点的排列数,要计算这个,我们必须先算出所有Ak、以及它们的交集的排列数。




因为我们知道当有x个不动点时,所有不动点的位置是固定的,而其它点可以任意排列。

用容斥原理对结果进行带入,而从n个点中选x个不动点的组合数为,那么至少包含一个不动点的排列数为:

 


 

那么不包含不动点(即错排数)的结果就是:

 

 


 

化简这个式子,我们得到了错排数的准确式和近似式:

 

 


 

(因为括号中是泰勒展开式的前n+1项)

 

用这个式子也可以解决一些类似的问题,如果现在求有m个不动点的排列数,那么我们可以对上式进行修改,也就是将括号中的累加到1/n!改成累加到1/(n-m)!

 

在OJ的相关题目

 

这里列出了一些可以用容斥原理解决的习题。 
· UVA #10325 "The Lottery" [难度:简单]

 

· UVA #11806 "Cheerleaders" [难度:简单]

 

· TopCoder SRM 477 "CarelessSecretary" [难度:简单]

 

· TopCoder TCHS 16 "Divisibility" [难度:简单]

 

· SPOJ #6285 NGM2 "Another Game With Numbers" [难度:简单]

 

· TopCoder SRM 382 "CharmingTicketsEasy" [难度:中等]

 

· TopCoder SRM 390 "SetOfPatterns"  [难度:中等]

 

· TopCoder SRM 176 "Deranged" [难度:中等]

 

· TopCoder SRM 457 "TheHexagonsDivOne" [难度:中等]

 

· SPOJ #4191 MSKYCODE "Sky Code" [难度:中等]

 

· SPOJ #4168 SQFREE "Square-free integers" [难度:中等]

 

· CodeChef "Count Relations" [难度:中等]

 

      

 

参考文献

 

       Debra K. Borkovitz. "Derangements and the Inclusion-Exclusion Principle"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

posted @ 2017-02-23 17:41  Angel_Kitty  阅读(1940)  评论(0编辑  收藏  举报