LeetCode 323. Number of Connected Components in an Undirected Graph

原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/

题目:

Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.

Example 1:

     0          3
     |          |
     1 --- 2    4

Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], return 2.

Example 2:

     0           4
     |           |
     1 --- 2 --- 3

Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]], return 1.

Note:
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

题解:

使用一维UnionFind.

Time Complexity: O(elogn). e是edges数目. Find, O(logn). Union, O(1).

Space: O(n).

AC Java:

 1 class Solution {
 2     public int countComponents(int n, int[][] edges) {
 3         if(n <= 0){
 4             return 0;
 5         }
 6         
 7         UnionFind uf = new UnionFind(n);
 8         for(int [] edge : edges){
 9             if(!uf.find(edge[0], edge[1])){
10                 uf.union(edge[0], edge[1]);
11             }
12         }
13         
14         return uf.size();
15     }
16 }
17 
18 class UnionFind{
19     private int count;
20     private int [] parent;
21     private int [] size;
22     
23     public UnionFind(int n){
24         this.count = n;
25         parent = new int[n];
26         size = new int[n];
27         for(int i = 0; i<n; i++){
28             parent[i] = i;
29             size[i] = 1;
30         }
31     }
32     
33     public boolean find(int i, int j){
34         return root(i) == root(j);
35     }
36     
37     private int root(int i){
38         while(i != parent[i]){
39             parent[i] = parent[parent[i]];
40             i = parent[i];
41         }
42         
43         return parent[i];
44     }
45     
46     public void union(int i, int j){
47         int rootI = root(i);
48         int rootJ = root(j);
49         if(size[rootI] > size[rootJ]){
50             parent[rootJ] = rootI;
51             size[rootI] += size[j];
52         }else{
53             parent[rootI] = rootJ;
54             size[rootJ] += size[rootI];
55         }
56         
57         this.count--;
58     }
59     
60      public int size(){
61         return this.count;
62     }
63 }

也可以使用BFS, DFS.

Time Complexity: O(n+e), 建graph用O(n+e), BFS, DFS 用 O(n+e). Space: O(n + e).

 1 public class Solution {
 2     public int countComponents(int n, int[][] edges) {
 3         List<List<Integer>> graph = new ArrayList<List<Integer>>();
 4         for(int i = 0; i<n; i++){
 5             graph.add(new ArrayList<Integer>());
 6         }
 7         
 8         for(int [] edge : edges){
 9             graph.get(edge[0]).add(edge[1]);
10             graph.get(edge[1]).add(edge[0]);
11         }
12         
13         HashSet<Integer> visited = new HashSet<Integer>();
14         int count = 0;
15         for(int i = 0; i<n; i++){
16             if(!visited.contains(i)){
17                 // bfs(graph, i, visited);
18                 dfs(graph, i, visited);
19                 count++;
20             }
21         }
22         return count;
23     }
24     
25     public void bfs(List<List<Integer>> graph, int i, HashSet<Integer> visited){
26         LinkedList<Integer> que = new LinkedList<Integer>();
27         visited.add(i);
28         que.add(i);
29         while(!que.isEmpty()){
30             int cur = que.poll();
31             List<Integer> neighbours = graph.get(cur);
32             for(int neighbour : neighbours){
33                 if(!visited.contains(neighbour)){
34                     que.add(neighbour);
35                     visited.add(neighbour);
36                 }
37             }
38         }
39     }
40     
41     public void dfs(List<List<Integer>> graph, int i, HashSet<Integer> visited){
42         visited.add(i);
43         for(int neighbour : graph.get(i)){
44             if(!visited.contains(neighbour)){
45                 dfs(graph, neighbour, visited);
46             }
47         }
48     }
49 }

跟上Find the Weak Connected Component in the Directed GraphNumber of Islands II.

posted @ 2016-03-06 13:16  Dylan_Java_NYC  阅读(1100)  评论(0编辑  收藏  举报