LeetCode 199. Binary Tree Right Side View
原题链接在这里:https://leetcode.com/problems/binary-tree-right-side-view/
题目:
Given a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.
For example:
Given the following binary tree,
1 <--- / \ 2 3 <--- \ \ 5 4 <---
You should return [1, 3, 4]
.
题解:
与Binary Tree Level Order Traversal相似,通过BFS一层一层扫树,这里是仅添加最右面的一个点,就是size is decreased to 0 的时候.
Time Complexity: O(n). n是tree的node总数.
Space: O(n), que的大小.
AC Java:
1 /** 2 * Definition for a binary tree node. 3 * public class TreeNode { 4 * int val; 5 * TreeNode left; 6 * TreeNode right; 7 * TreeNode() {} 8 * TreeNode(int val) { this.val = val; } 9 * TreeNode(int val, TreeNode left, TreeNode right) { 10 * this.val = val; 11 * this.left = left; 12 * this.right = right; 13 * } 14 * } 15 */ 16 class Solution { 17 public List<Integer> rightSideView(TreeNode root) { 18 List<Integer> res = new ArrayList<>(); 19 if(root == null){ 20 return res; 21 } 22 23 LinkedList<TreeNode> que = new LinkedList<>(); 24 que.add(root); 25 while(!que.isEmpty()){ 26 int size = que.size(); 27 while(size-- > 0){ 28 TreeNode cur = que.poll(); 29 if(cur.left != null){ 30 que.add(cur.left); 31 } 32 33 if(cur.right != null){ 34 que.add(cur.right); 35 } 36 37 if(size == 0){ 38 res.add(cur.val); 39 } 40 } 41 } 42 43 return res; 44 } 45 }
AC C++:
1 /** 2 * Definition for a binary tree node. 3 * struct TreeNode { 4 * int val; 5 * TreeNode *left; 6 * TreeNode *right; 7 * TreeNode() : val(0), left(nullptr), right(nullptr) {} 8 * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 9 * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 10 * }; 11 */ 12 class Solution { 13 public: 14 vector<int> rightSideView(TreeNode* root) { 15 vector<int> res; 16 if(!root){ 17 return res; 18 } 19 20 queue<TreeNode*> que; 21 que.push(root); 22 while(!que.empty()){ 23 int size = que.size(); 24 while(size-- > 0){ 25 TreeNode* cur = que.front(); 26 que.pop(); 27 28 if(cur->left){ 29 que.push(cur->left); 30 } 31 32 if(cur->right){ 33 que.push(cur->right); 34 } 35 36 if(size == 0){ 37 res.push_back(cur->val); 38 } 39 } 40 } 41 42 return res; 43 } 44 };
AC Python:
1 # Definition for a binary tree node. 2 # class TreeNode: 3 # def __init__(self, val=0, left=None, right=None): 4 # self.val = val 5 # self.left = left 6 # self.right = right 7 class Solution: 8 def rightSideView(self, root: Optional[TreeNode]) -> List[int]: 9 if not root: 10 return [] 11 12 res = [] 13 que = deque([root]) 14 15 while que: 16 size = len(que) 17 for i in range(size): 18 cur = que.popleft() 19 20 if cur.left: 21 que.append(cur.left) 22 23 if cur.right: 24 que.append(cur.right) 25 26 if i == size - 1: 27 res.append(cur.val) 28 29 return res 30