LeetCode 279. Perfect Squares
原题链接在这里:https://leetcode.com/problems/perfect-squares/
题目:
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...
) which sum to n.
For example, given n = 12
, return 3
because 12 = 4 + 4 + 4
; given n = 13
, return 2
because 13 = 4 + 9
.
题解:
Let dp[i] denotes the least number of perfect squares sum to i.
Then for all the candiates smaller than i, if the difference between i and candidate is perfect square, then update the dp[candidate]+1. Maintain the smallest.
Thne how to make sure the difference is perfect square.
Let candidate = i - j*j.
Time Complexity: O(nlogn).
Space: O(n).
AC Java:
1 class Solution { 2 public int numSquares(int n) { 3 int [] dp = new int[n+1]; 4 for(int i = 1; i<=n; i++){ 5 dp[i] = i; 6 for(int j = 0; i-j*j>=0; j++){ 7 dp[i] = Math.min(dp[i], dp[i-j*j]+1); 8 } 9 } 10 11 return dp[n]; 12 } 13 }
Could also do it from head to tail.
初始化i*i的位置为1, 然后对i + j*j 更新min(dp[i+j*j], dp[i] + 1).
Time Complexity: O(nlogn). Space: O(n).
AC Java:
1 public class Solution { 2 public int numSquares(int n) { 3 if(n < 0){ 4 return 0; 5 } 6 int [] dp = new int[n+1]; 7 Arrays.fill(dp, Integer.MAX_VALUE); 8 for(int i = 0; i*i <= n; i++){ 9 dp[i*i] = 1; 10 } 11 for(int i = 1; i<=n; i++){ 12 for(int j = 1; i+j*j<=n; j++){ 13 dp[i+j*j] = Math.min(dp[i+j*j], dp[i]+1); 14 } 15 } 16 return dp[n]; 17 } 18 }
与Count Primes类似.