LeetCode 123. Best Time to Buy and Sell Stock III
原题链接在这里:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/
题目:
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
题解:
这里最多可以进行k次交易,就是Best Time to Buy and Sell Stock IV然后本题把k变成2即可.
全局最优global是到达第i天可以最多进行j次交易的利润是多少,局部最优local是必须在第i天进行最后一次交易的利润。
先更新局部最优:
local[i][j] = max(global[i-1][j-1] + max(diff,0), local[i-1][j] + diff)
diff是今天与昨天的差价, global[i-1][j-1] + max(diff,0)是指到第i-1天最多进行j-1次交易时的利润,加上进天得最后一次交易。
后一项是local[i-1][j] + diff是指在i-1天就进行了最多j次交易,i天进行最后一次交易,原本是i-1天卖的现在变成i天卖。
然后是更新全局变量:
global[i][j] = max(global[i-1][j], local[i][j])
比较前一天的全局最优和当天的局部最优,取大的那一个。
Method 2用了降维方法节省空间。
但是注意双重loop 的内层loop, j是从k向小变到1, 因为一维空间只能保存当前一行内容,更新local时用到了了global[i-1][j-1].
若是从前往后走到了i, j时,[i-1][j-1]会被[i][j-1]覆盖掉,所以要从后往前走。
Method 1 Time Complexity: O(prices.length * k), k是最多交易次数,这里k=2. Space: O(prices.length*k).
Method 2 Time Complexity: O(prices.length * k). Space: O(k).
AC Java:
1 public class Solution { 2 public int maxProfit(int[] prices) { 3 return helper(prices,2); 4 } 5 private int helper(int[] prices, int k){ 6 if(prices == null || prices.length == 0){ 7 return 0; 8 } 9 /* 10 //Method 1 11 int[][] local = new int[prices.length][k+1]; 12 int[][] global = new int[prices.length][k+1]; 13 for(int i = 1; i<prices.length; i++){ 14 int diff = prices[i]-prices[i-1]; 15 for(int j = 1; j<=k; j++){ 16 local[i][j] = Math.max(global[i-1][j-1] + Math.max(diff,0), local[i-1][j]+diff); 17 global[i][j] = Math.max(global[i-1][j], local[i][j]); 18 } 19 } 20 return global[prices.length-1][k]; 21 */ 22 23 //Method 2 24 int [] local = new int[k+1]; 25 int [] global = new int[k+1]; 26 for(int i = 1; i<prices.length; i++){ 27 int diff = prices[i]-prices[i-1]; 28 for(int j = k; j>=1; j--){ 29 local[j] = Math.max(global[j-1] + Math.max(diff,0), local[j]+diff); 30 global[j] = Math.max(global[j], local[j]); 31 } 32 } 33 return global[k]; 34 } 35 }