POJ2976 Dropping tests —— 01分数规划 二分法
题目链接:http://poj.org/problem?id=2976
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 13615 | Accepted: 4780 |
Description
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be
.
Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .
Input
The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.
Output
For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.
Sample Input
3 1 5 0 2 5 1 6 4 2 1 2 7 9 5 6 7 9 0 0
Sample Output
83 100
Hint
To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).
Source
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <vector> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 #define ms(a,b) memset((a),(b),sizeof((a))) 13 using namespace std; 14 typedef long long LL; 15 const double EPS = 1e-8; 16 const int INF = 2e9; 17 const LL LNF = 2e18; 18 const int MAXN = 1e3+10; 19 20 int a[MAXN], b[MAXN]; 21 double d[MAXN]; 22 int n, k; 23 24 bool test(double L) 25 { 26 for(int i = 1; i<=n; i++) 27 d[i] = 1.0*a[i] - L*b[i]; 28 sort(d+1, d+1+n); 29 double sum = 0; 30 for(int i = k+1; i<=n; i++) //舍弃前k小的数 31 sum += d[i]; 32 return sum>=0; 33 } 34 35 int main() 36 { 37 while(scanf("%d%d", &n, &k) && (n||k)) 38 { 39 for(int i = 1; i<=n; i++) 40 scanf("%d", &a[i]); 41 for(int i = 1; i<=n; i++) 42 scanf("%d", &b[i]); 43 44 double l = 0, r = 1.0; 45 while(l+EPS<=r) 46 { 47 double mid = (l+r)/2; 48 if(test(mid)) 49 l = mid + EPS; 50 else 51 r = mid - EPS; 52 } 53 printf("%.0f\n", r*100); 54 } 55 }