POJ3278 Catch That Cow —— BFS

题目链接:http://poj.org/problem?id=3278


 

Catch That Cow
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 97563   Accepted: 30638

 

Description

Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.

* Walking: FJ can move from any point X to the points - 1 or + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.

If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?

Input

Line 1: Two space-separated integers: N and K

Output

Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.

Sample Input

5 17

Sample Output

4

Hint

The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.

Source

 




题解:

一开始以为是数学找规律,但是看到数据范围很小,n<=1e5,可以用数组存;而且题目要求的是“最少步数”,而“最少步数”经常都是用BFS求的。再将BFS的思想带入看看,发现可以解决问题。

在第一次提交时,RUNTIME ERROR了。但是再看看代码,数组没有开小,不是数组的问题。后来发现再判断某个位置是否vis时,先判断了是否vis,然后再判断这个位置是否合法,这样会导致数组溢出,所以问题就出现在这里了,需谨慎!!


 

代码如下:

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <vector>
 7 #include <queue>
 8 #include <stack>
 9 #include <map>
10 #include <string>
11 #include <set>
12 #define ms(a,b) memset((a),(b),sizeof((a)))
13 using namespace std;
14 typedef long long LL;
15 const int INF = 2e9;
16 const LL LNF = 9e18;
17 const int MOD = 1e9+7;
18 const int MAXN = 1e5+10;
19 
20 int vis[MAXN];
21 
22 struct node
23 {
24     int val, step;
25 };
26 
27 queue<node>que;
28 int bfs(int n, int k)
29 {
30     ms(vis,0);
31     while(!que.empty()) que.pop();
32 
33     node now, tmp;
34     now.val = n;
35     now.step = 0;
36     vis[n] = 1;
37     que.push(now);
38 
39     while(!que.empty())
40     {
41         now = que.front();
42         que.pop();
43 
44         if(now.val==k)
45             return now.step;
46 
47         tmp.step = now.step+1;
48         if(now.val+1>=0 && now.val+1<=1e5 && !vis[now.val+1] )  //先判断范围再判断vis !!!
49             vis[now.val+1] = 1, tmp.val = now.val+1, que.push(tmp);
50         if(now.val-1>=0 && now.val-1<=1e5 && !vis[now.val-1] )
51             vis[now.val-1] = 1, tmp.val = now.val-1, que.push(tmp);
52         if(now.val*2>=0 && now.val*2<=1e5 && !vis[now.val*2] )
53             vis[now.val*2] = 1, tmp.val = now.val*2, que.push(tmp);
54     }
55 }
56 
57 int main()
58 {
59     int n, k;
60     scanf("%d%d",&n, &k);
61     cout<< bfs(n,k) <<endl;
62 }
View Code

 


 

posted on 2017-09-01 11:29  h_z_cong  阅读(189)  评论(0编辑  收藏  举报

导航